

Development of high-resolution maps of vegetation cover

to support land planning and grazing management in fire

prone landscapes

Bianka Trenčanová

Thesis to obtain the Master of Science Degree in

Energy Engineering and Management

Supervisors: Prof. Alexandre José Malheiro Bernardino,

Dr. Vânia Andreia Malheiro Proença

Examination Committee

Chairperson: Prof. Susana Isabel Carvalho Relvas

Supervisor: Prof. Alexandre José Malheiro Bernardino

Member of the Committee: Prof. Bruno Duarte Damas

January 2021

 ii

 iii

Abstract

The focus of this thesis is to develop a classifier of shrub vegetation cover. Shrubs are a key vegetation

type in dry Mediterranean climates, that is associated with an increased risk of fire. The classifier will be

further used for sustainable land planning and grazing management for fire prevention. Two main

objectives are 1.) to design a new dataset from an unmanned aerial vehicle (UAV) imagery using

ordinary RGB channels and 2.) to develop a method to increase the accuracy of a convolutional neural

network (CNN) with a U-Net architecture to detect shrubs in a complex heterogeneous forest

environment within a study farm in Portugal. The tested methods and their feasibility for this particular

task are data augmentation, tiling, rescaling, dataset balancing and hyperparameter tuning (namely the

number of filters, dropout rate and batch size). The biggest improvements were recorded with data

augmentation, tiling and rescaling practices. The developed classification model achieves an average

F1 score of 0.72 on three separate test sets even though it is trained on a relatively small dataset with

some degree of inaccurate labels. It takes around four hours to train the model. The major challenges

identified in this work were precise manual image annotation, small sample size, time and memory limits

of used tools, and high intra-class and low inter-class variance of the target vegetation class. The main

contributions of this study are evaluating the performance of the state-of-the-art CNN for mapping fine-

grained land cover patterns from RGB remote sensing data and proposing a method to improve the

model’s performance.

Keywords: U-Net, convolutional neural network (CNN), shrub detection, heterogeneous land cover

mapping, UAV imagery, Mediterranean forest

 iv

Resumo

O foco desta tese é desenvolver um classificador da cobertura arbustiva usando imagens obtidas por

um veículo aéreo não tripulado (UAV). Em climas mediterrânicos, a expansão de biomassa arbustiva

está frequentemente associada a um maior risco de incêndio. O classificador será usado

posteriormente para apoiar o ordenamento e gestão sustentável de paisagens de pastoreio para

prevenção de incêndios. Os dois objetivos principais são 1.) construir um novo conjunto de dados, a

partir de imagens de um veículo aéreo não tripulado (UAV) usando canais RGB comuns e 2.)

desenvolver um método para aumentar a precisão de uma rede neural convolucional (CNN) com uma

arquitectura U-Ne t para detecção de arbustos num ambiente florestal, com cobertura do solo

heterogénea e complexa, usando uma área de estudo em Portugal. Os métodos testados e sua

viabilidade para esta tarefa são aumento de dados, tiling, reescalonamento, ponderação de conjunto

de dados e ajuste de hiperparâmetros (ou seja, o número de filtros, taxa de dropout e tamanho do lote).

As maiores melhorias foram registradas com as técnicasde aumento de dados, tiling e

reescalonamento. O modelo de classificação desenvolvido atinge uma pontuação F1 média de 0,72 em

três conjuntos de teste separados, embora o conjunto de dados de treino seja relativamente pequeno

e contendo alguns rótulos imprecisos. O treino do modelo dura cerca de quatro horas. Os principais

desafios identificados neste trabalho foram a anotação manual precisa da imagem, o pequeno tamanho

da amostra, os limites de tempo e memória das ferramentas utilizadas e a alta variância intra-classe e

baixa variância inter-classe da vegetação alvo. As principais contribuições deste estudo são a avaliação

do desempenho do estado-da-arte da CNN para mapear a cobertura do solo em paisagem com uma

textura fina (“fine-grained”), a partir de dados RGB de detecção remota, e propor um método para

melhorar o desempenho do modelo.

Palavras-chave: U-Net, rede neural convolucional (CNN), detecção de arbustos, mapeamento de

cobertura do solo de alta resolução, imagens de UAV, floresta mediterrânea

 v

Acknowledgements

I am very grateful that I got the opportunity to contribute to a project whose objective is to bring

sustainability into areas linked to a sector as critical to our society as the food production and to show

that nature is a part of the solution. I would like to thank Dr. Vânia Proença for her guidance and

willingness to share her knowledge. I hope my work will bring benefit to the project and move it closer

to its goals.

I chose this thesis topic as an opportunity to learn something about a field that is gaining importance.

Without any prior knowledge of machine learning, it was a challenging but enriching task and I would

like to thank Prof. Alexandre José Malheiro Bernardino for his guidance and patience on my path.

I very much appreciate all the help and supervision provided to me even during the difficult times brought

by the pandemics.

Last but not least, I would like to thank my friends for supporting me in good and bad times, especially

during the quarantine. To Giacomo for his tireless helping hand, enlightened attitude and never stopping

motivation, to Yasmine for her endless optimism, to Vasco for the scholarly talks; to Berto for sharing

the journey and to Giorgia for her peculiar encouragements.

This work was partially supported by projects GO SILVPAST - Implementação custo-eficiente de

mosaicos silvo-pastoris de carvalho negral (PDR2020-101-031873), and FCT project FIREFRONT

(PCIF/SSI/0096/2017).

 vi

Table of Contents

Abstract ... iii

Resumo.. iv

Acknowledgements ... v

Table of Contents ... vi

List of Figures ... viii

List of Tables ... xi

List of Acronyms .. xiii

1 Introduction .. 1

1.1 Background and motivation ... 1

1.2 Case study: Quinta da França ... 3

1.3 Challenges ... 5

1.4 Objectives .. 5

1.5 Structure of the thesis .. 6

2 Related work... 7

2.1 Land cover mapping .. 7

2.2 Bands, indices and data fusion ... 8

2.3 Convolutional neural networks .. 9

2.4 Segmentation networks ... 10

2.5 U-Net .. 11

2.6 Shrub cover mapping .. 13

2.7 Hyperparameters ... 14

2.8 Pre-processing .. 15

2.9 Data augmentation and transfer learning .. 17

3 Materials and methods .. 19

3.1 Study area ... 19

3.2 Data description ... 21

3.3 QGIS data visualization ... 23

3.4 Machine learning model .. 26

 vii

3.5 Description of datasets .. 29

3.5.1 The development of the main dataset .. 29

3.5.2 The development of sub-datasets .. 32

3.5.3 The development of test sets ... 34

4 Experiments ... 35

4.1 The baseline: sub-dataset A .. 35

4.2 Sub-datasets B-E: patch size, scale and data augmentation.. 35

4.3 Balancing the datasets .. 38

4.4 Hyperparameter tuning .. 39

4.5 Test data .. 39

5 Results .. 41

5.1 The baseline: sub-dataset A .. 41

5.2 Sub-datasets B-E: patch size, scale and data augmentation.. 45

5.2.1 Summary .. 45

5.2.2 Impact of data augmentation and patch size .. 46

5.2.3 Impact of down-scaling ... 48

5.2.4 Detailed results on validation set .. 49

5.2.5 Performance fluctuation .. 58

5.3 Balancing the datasets .. 59

5.4 Hyperparameter tuning .. 60

5.5 Test data .. 61

6 Discussion .. 65

6.1 The baseline: sub-dataset A .. 65

6.2 Sub-datasets B-E: patch size, scale and data augmentation.. 66

6.3 Balancing the datasets .. 68

6.4 Hyperparameter tuning .. 68

6.5 Test data .. 70

7 Conclusions and future work ... 73

8 References .. 75

Appendix .. a

 viii

List of Figures

Figure 1 Global greenhouse gas emissions from food production (Source: Our World in Data, 2019) .. 2

Figure 2 The original U-Net architecture. Blue boxes – multi-channel feature maps, white boxes – copied

feature maps, the no. of the channels is denoted at the top of the box, height and width at lower left

edge of the box, the arrows denote different operations. (Source: Ronneberger et al. (2015)) 12

Figure 3 Left: Location of Quinta da França in Portugal (Source: QGIS). Right: The zone of the oak

forest Serra (red) (Source: Terraprima -Sociedade Agrícola Lda., 2012).. 20

Figure 4 Aerial view of Quinta da França (yellow border), oak forest perimeter (red border) and grazing

parcel (white border). The red star depicts the location of the test data used in this thesis (Source: GO

- SILVPAST - Terraprima, n.d.) .. 21

Figure 5 Sample RGB image taken with VIS camera (left) and NIR image taken with NDVI camera (right)

 ... 22

Figure 6 Visualized classification results. Pixel colour codes: Green – Trees, Red – Shrubs, Black –

Shadows, Gray – Rocks, Yellow – Bare soil (Visualized in QGIS) .. 26

Figure 7 Detailed architecture of the used model. 2@Conv layers – two consecutive Convolution Layers;

c1-c9 – the output tensors of Convolutional Layers; p1-p4 – the output tensors of Max Pooling Layers,

u6-u9 – the output tensors of up-sampling (transposed convolutional) layers (Source:

https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47) 28

Figure 8 Flowchart of slicing original images into tiles and an illustration of tile overlap 29

Figure 9 An example of a labelled tile and its binary masks. Up-left: original image tile, up-right: labeled

image tile (red - shrubs, orange - trees, yellow - shadows, light yellow - rocks). Bottom (from left): binary

mask of shrubs, trees, shadows and rocks ... 31

Figure 10 Flowchart of the development of the final sub-datasets for experiments............................. 33

Figure 11 Examples of patches with different sizes (from left: sub-dataset A, sub-dataset B, sub-dataset

C, sub-dataset D, sub-dataset E) .. 37

Figure 12 Visual example of the performance on validation data. Shrubs class, 832 patch-dataset. From

left: image patch, binary mask, prediction and binary prediction with threshold 0.5. 41

Figure 13 Two visual examples of the performance (top: better, with high recall and precision; bottom:

worse, with low precision) on validation data. Trees class, 832 patch-dataset. From left: image patch,

binary mask, prediction and binary prediction with threshold 0.5.. 42

Figure 14 Visual example of the performance on validation data. Shadows class, 832 patch-dataset.

From left: image patch, binary mask, prediction and binary prediction with threshold 0.5. 43

 ix

Figure 15 Two visual examples of the performance (top: better, bottom: worse) on validation data. Rocks

class, 832 patch-dataset. From left: image patch, binary mask, prediction and binary prediction with

threshold 0.5. ... 43

Figure 16 Visual example of the performance on validation data. Shrubs class, 3832 patch-dataset.

From left: image patch, binary mask, prediction and binary prediction with threshold 0.5. 44

Figure 17 Qualitative comparison of the performance of the models with the longest training time and

the best tradeoff model regarding time and performance, C-1664_144x144. 46

Figure 18 Impact of data augmenting and a patch size on F1 score. Model input: (128 x 128) px 47

Figure 19 Impact of data augmentation on class distribution in the dataset: two runs of random

augmentations of sub-dataset C (1664 patches) with the same techniques .. 48

Figure 20 Impact of down-scaling on F1 score ... 49

Figure 21 Visual example of the performance on deformed validation data. Shrubs, 808 x (200 x 200)

px patch-dataset, model input: (128 x 128) px. From left: image patch, binary mask, prediction and binary

prediction with threshold 0.5. ... 50

Figure 22 Visual example of the performance on validation data. Shrubs, 1658 x (200 x 200) px patch-

dataset, model input: (128 x 128) px. From left: image patch, binary mask, prediction and binary

prediction with threshold 0.5. ... 50

Figure 23 Visual example of the performance on deformed validation data. Shrubs, 1658 x (200 x 200)

px patch-dataset, model input: (192 x 192) px. From left: image patch, binary mask, prediction and binary

prediction with threshold 0.5. ... 51

Figure 24 Visual example of the performance on validation data. Shrubs, 3808 x (200 x 200) px patch-

dataset, model input: (128 x 128) px. From left: image patch, binary mask, prediction and binary

prediction with threshold 0.5. ... 51

Figure 25 Visual example of the performance validation data. Shrubs, 1664 x (300 x 300) px patch-

dataset, model input: (144 x 144) px. From left: image patch, binary mask, prediction and binary

prediction with threshold 0.5. ... 52

Figure 26 Visual example of the performance on validation data. Shrubs, 3808 x (300 x 300) px patch-

dataset, model input: (128 x 128) px. From left: image patch, binary mask, prediction and binary

prediction with threshold 0.5. ... 53

Figure 27 Visual example of the performance on validation data. Shrubs, 3808 x (300 x 300) px patch-

dataset, model input: (144 x 144) px. From left: image patch, binary mask, prediction and binary

prediction with threshold 0.5. ... 53

Figure 28 Two visual examples of the performance on validation data. Shrubs, 1658 x (400 x 400) px

patch-dataset, model input: (192 x 192) px. From left: image patch, binary mask, prediction and binary

prediction with threshold 0.5. ... 55

 x

Figure 29 Two visual examples of the performance (top: better, bottom: worse) on validation data.

Shrubs, 808 x (500 x 500) px patch-dataset, model input: (128 x 128) px. From left: image patch, binary

mask, prediction and binary prediction with threshold 0.5. ... 56

Figure 30 Two visual examples of the performance on validation data. Shrubs, 1652 x (500 x 500) px

patch-dataset, model input: (128 x 128) px. From left: image patch, binary mask, prediction and binary

prediction with threshold 0.5. ... 57

Figure 31 Two visual examples of the performance (top: better, bottom: worse) on validation data.

Shrubs, 3808 x (500 x 500) px patch-dataset, model input: (128 x 128) px. From left: image patch, binary

mask, prediction and binary prediction with threshold 0.5. ... 58

Figure 32 Illustration of the classification results of model C-1664_144x144(1%) 60

Figure 33 Illustration of the classification results of model C-1664_144x144(45%) 60

Figure 34 Visual example of the performance of C-3808_288x288 model on test set 1. From left: image

patch, binary mask, prediction and binary prediction with threshold 0.5. Accuracy = 0.89, Precision =

0.84, Recall = 0.72, F1 score = 0.77. .. 62

Figure 35 Visual example of the performance of C-3808_288x288 model on test set 2. From left: image

patch, binary mask, prediction and binary prediction with threshold 0.5. Accuracy = 0.74, Precision =

0.76, Recall = 0.76, F1 score = 0.76. .. 62

Figure 36 Visual example of the performance of C-3808_288x288 model on test set 3. From left: image

patch, binary mask, prediction and binary prediction with threshold 0.5. Accuracy = 0.67, Precision =

0.56, Recall = 0.71, F1 score = 0.62. .. 63

Figure 37 Visual example of the performance of C-3808_288x288 model on test set 4. From left: image

patch, binary mask, prediction and binary prediction with threshold 0.5. Accuracy = 0.63, Precision =

0.12, Recall = 0.00, F1 score = 0.00. .. 63

 xi

List of Tables

Table 1 The main problems with identifying objects from individual classes during labelling 24

Table 2 Area Based Error Matrix (Source: QGIS).. 25

Table 3 Pixel share of classes in the dataset .. 30

Table 4 The summary of experiments for the base model with sub-dataset A, (100 x 100) px patches 35

Table 5 The summary of experiments with the sub-dataset B, (200 x 200) px patches 37

Table 6 The summary of experiments with the sub-dataset C, (300 x 300) px patches 37

Table 7 The summary of experiments with the sub-dataset D, (400 x 400) px patches 37

Table 8 The summary of experiments with the sub-dataset E, (500 x 500) px patches 38

Table 9 Summary of changes in size inside U-Net depending on the model input size........................ 38

Table 10 Summary of changes in size inside U-Net depending on the initial number of filters 39

Table 11 Confusion matrix of predictions on validation data. Shrubs class, 832 patch-dataset 41

Table 12 Confusion matrix of predictions on validation data. Trees class, 832 patch-dataset 42

Table 13 Confusion matrix of predictions on validation data. Shadows class, 832 patch-dataset 42

Table 14 Confusion matrix of predictions on validation data. Rocks class, 832 patch-dataset 43

Table 15 Confusion matrix of predictions on validation data. Shrubs class, 1664 patch-dataset 44

Table 16 Confusion matrix of predictions on validation data. Shrubs class, 3832 patch-dataset 44

Table 17 The summary table of results of all performed experiments... 45

Table 18 Confusion matrix of predictions on validation data. Shrubs, 1664 x (300 x 300) px patch-

dataset, model input: (128 x 128) px ... 52

Table 19 Confusion matrix of predictions on validation data. Shrubs, 3808 x (300 x 300) px patch-

dataset, model input: (144 x 144) px ... 53

Table 20 Confusion matrix of predictions on validation data. Shrubs, 1658 x (400 x 400) px patch-

dataset, model input: (192 x 192) px ... 54

Table 21 Confusion matrix of predictions on validation data. Shrubs, 808 x (500 x 500) px patch-dataset,

model input: (128 x 128) px ... 56

Table 22 Confusion matrix of predictions on validation data. Shrubs, 3808 x (500 x 500) px patch-

dataset, model input: (128 x 128) px ... 57

Table 23 Averages, absolute uncertainties and ranges of metrics evaluated on validation data of four

different models ... 59

 xii

Table 24 Summary of results using datasets with different extent of shrub representation 59

Table 25 The summary of the impact of increasing network’s depth on the performance 60

Table 26 The summary of the impact of different dropout rate on the performance 61

Table 27 The summary of the impact of different batch size on the performance 61

 xiii

List of Acronyms

ANN Artificial Neural Network

CNN Convolutional Neural Network

CO2 & CO2-eq Carbon dioxide & carbon dioxide equivalent

FN False Negative

FP False Positive

GHG Greenhouse gas emissions

HR & VHR High Resolution & Very High Resolution

IOU Intersection Over Union

LR Learning rate

LULC & LULUCF Land-use-land-cover & Land Use, Land-Use Change, and Forestry

ML Machine Learning

NIR Near Infrared (band)

ReLU Rectified Linear Unit

RGB Red, Green, Blue (band)

ROI Region of Interest

SDG Sustainable Development Goals

TN True Negative

TP True Positive

UAV Unmanned Aerial Vehicle

URI Uniform Resource Identifier

VIS Visible Range

 xiv

 1

1 Introduction

1.1 Background and motivation

Human activities have a tremendous impact on the environment. A dramatic population increase from

around 1*109 in 1800 to 7.8*109 in 20201 and a society based on consumerism lead to ever growing

needs and demands of humankind, which exerts unprecedented pressure on Earth systems. Notable

consequences of Anthropocene-induced climate change have made us recognize our responsibility and

defects in our structures. Numerous attempts have been made in order to redirect our civilization

towards a more just and sustainable path. Well known examples are the United Nations’ Sustainable

Development Goals (SDGs, 2015)2 and the Planetary Boundaries (2009)3, a framework proposed by

scientists to guide sustainable development within safe environmental limits. Issues addressed in SDG

2 (Zero hunger) and SDG 12 (Responsible consumption and production) and in Planetary Boundaries

(mainly Biogeochemical flows, Biosphere integrity loss, and Land-system change) are directly linked to

our food systems, with the two mentioned boundaries being already far beyond the Zone of high risks

and the third one approaching it.

Food production is one of the major contributors to degradation of the environment. This sector accounts

for approximately 26% (13.598 Gt CO2-eq/yr) of global greenhouse gas emissions (GHG), out of which

one half (6.93 Gt CO2-eq/yr) comes from crop production and land use, linked to turning natural

ecosystems such as forests and grasslands, that act as carbon “sinks”, into cropland and pastures, that

release additional carbon dioxide (CO2)4. There is a tremendous opportunity cost to this as well, since

insensible land use does not only release additional CO2, but also significantly decreases the amount

of CO2 potentially sequestered by natural vegetation. Between years 2000 and 2011, there was a global

increase of 6% (from 3.2 Gt CO2/year to 3.4 Gt CO2/year) in the amount of carbon sequestration loss

due to agriculture and forestry, with forestry activities like logging contributing the biggest share (30%)

to the total carbon sequestration loss (Marques et al., 2019). Complete decomposition of individual GHG

emission contributors within the food production sector can be found in Figure 1. The food production

sector is also responsible for nitrogen and phosphorus pollution, biodiversity loss, and water and land

use, eroding the stability of the Earth system.

After the Kyoto Protocol, a worsening environmental situation had led to creation of yet another famous

document trying to mitigate climate change in 2015, the Paris Agreement. Its target is to keep the global

average temperature increase below 2°C by 2100, relative to 1861 – 1880 temperatures. To make this

goal attainable a carbon budget for Land Use, Land-Use Change, and Forestry (LULUCF) translates to

an allowance of emitting 5 Gt CO2-eq/yr by 2050 and then transiting into a net carbon sink absorbing 10

1 https://www.worldometers.info/world-population/
2 https://sdgs.un.org/goals
3 https://www.stockholmresilience.org/research/planetary-boundaries.html
4 https://ourworldindata.org/food-ghg-emissions#:~:text=They%20are%20the%20direct%20emissions,
for%2024%25%20of%20food%20emissions.

https://www.worldometers.info/world-population/
https://sdgs.un.org/goals
https://www.stockholmresilience.org/research/planetary-boundaries.html
https://ourworldindata.org/food-ghg-emissions#:~:text=They%20are%20the%20direct%20emissions,for%2024%25%20of%20food%20emissions.
https://ourworldindata.org/food-ghg-emissions#:~:text=They%20are%20the%20direct%20emissions,for%2024%25%20of%20food%20emissions.

 2

Gt CO2-eq/yr by 2100 (Willett et al., 2019). Agricultural systems can become carbon sinks, but some

emissions-producing biological processes that are intrinsic to agriculture, such as ruminant livestock’s

digestion producing methane (CH4) or soil microbes emitting nitrous oxide (N2O), imply that agricultural

GHG emissions cannot be eliminated entirely, which makes this task even more challenging. That’s why

both bottom-up and top-down approaches are needed. While the former stands on a consumption side

and is a responsibility of every individual, the latter requires structural change of the food production

systems. Proper sustainable management practices that are aligned with Earth system processes

urgently need to be developed and adapted on a large scale. Better harnessing of ecosystem services

such as pest control, pollination, water regulation, and nutrient cycling, will lead to higher productivity

and resilience, and at the same time will reduce harmful environmental impacts of this sector. Cattle

farming, which is a big part of our current food production industry, is not only the biggest contributor of

GHG emissions in the food production sector (31% along with fisheries, see Figure 1), but has also the

highest impact on biodiversity, that contributed to approximately 28% of total impending bird species

extinctions in 2011 (Marques et al., 2019).

Figure 1 Global greenhouse gas emissions from food production (Source: Our World in Data, 2019)

However, traditional livestock systems also play a role in biodiversity conservation, climate adaptation,

and socioecological resilience at regional and local scales (Proença & Teixeira, 2019).Ecological

processes, such as nutrient cycling, soil fertilization, maintenance of genetic diversity and regulation of

vegetation growth, once supported by wild large herbivores (Ripple et al., 2015), are now sustained by

free-range livestock in areas where wild large herbivores are scarce or no longer present. However,

strong socio-economic drivers stimulate rural-urban migration, leading to an extensive abandonment of

 3

agricultural land. The absence of large herbivores and the withdrawal from human activities increase

fuel loads and promotes homogenization of vegetation in the affected areas. Shrub growth, after the

cessation of land use, increases the susceptibility of the landscape to fires, and is further s enhanced

by wildfires due to its resprouting ability (Rey Benayas, 2007). This can establish a positive feedback

loop, leading to vast declines in biodiversity and change in natural fire dynamics, especially dangerous

in Mediterranean Basin, which has already high fire intensities and frequencies due to its dry climate

and impacts of global warming in recent decades. Only in 2017, wildfires that destroyed areas in the

European Natura 2000 network, incurred damage of 10 billion euros (Kinaneva et al., 2019). That is why

active re-introduction of herbivores into fire prone regions could serve as an environmentally sustainable

and time and cost-effective method for wildfire prevention. Prescribed (or targeted) grazing is a

silvopastoral practice that promotes heterogeneous landscapes, controls shrub encroachment and is

officially considered as a wildfire prevention tool (Lovreglio et al., 2014).

However, such interventions require thorough land planning, preventive management and regular

monitoring for which a detailed land cover mapping is essential. Remote sensing is a primary source of

data for vegetation mapping and thanks to continual developments in geo-information technologies this

field is gradually becoming more universal. Limitations that satellite-based systems face, such as

insufficient spatial, spectral and temporal resolutions, cloud cover or high cost of data acquisition, are

resolved with the emergence of a new remote sensing aerial platform – unmanned aerial vehicles

(UAVs). UAVs have very high spatial resolutions thanks to their low speed and flight altitude, they are

cheaper, more flexible in obtaining data from target areas that are often difficult to reach, they minimize

disturbances of inspected areas and provide real-time monitoring (Pérez-Rodríguez et al., 2020).

Acquired data is often used in combination with Artificial Neural Networks (ANNs), that have the capacity

to speed up evaluation process of the input information even over large datasets. That is why these

methods are becoming a fundamental tool in numerous fields from wildlife conservation and

management and various agricultural applications to fire detection.

1.2 Case study: Quinta da França

This thesis uses a case study farm, Quinta da França, that integrates agricultural and forest land uses.

The farm’s management is guided by sustainability principles. The farm is managed by Terraprima

Agrícola. Terraprima is a business group formed by Terraprima - Serviços Ambientais (Environmental

Services) and Terraprima - Sociedade Agrícola (Agricultural Society), promoting environmental services

provided by agroforestry activities. Terraprima Ambiental is a spin-off of the Instituto Superior Técnico,

dedicated to the design and implementation of integrated systems to compensate for environmental

impacts resulting from human activities. They are involved in the management of projects for

remuneration of farmers delivering environmental services through good soil management practices.

Terraprima Agrícola was established in 1994 and since then has been managing a farm Quinta da

França, whose sustainable forest management is a part of Terraprima’s general long-term endeavors to

demonstrate sustainable management of rural areas, while maximizing economic profitability,

 4

ecosystem services and benefits for collaborators of projects related to the environment and

sustainability5.

On the farmland, Quinta da França exercises integrated production, which is an agricultural system for

the food production that favors protection of the environment and the consumer, producing high quality

products with rational management of natural resources, contributing to development of sustainable

agriculture6. It maximizes synergies between forest production and agricultural production, that

enhances multiple environmental services. A biodiverse pastures system, invented by Portuguese

researcher Davis Crespo in the 70’s, is implemented in non-forest areas of the farm. It mixes different

plant species, which increases organic matter in the soil and better retains CO2. Besides that, CO2 is

also captured by the forest area, thanks to what Quinta da França successfully demonstrated that the

provision of environmental services (in this case natural agroforestry carbon sink) can be a competitive

agricultural market product, alongside conventional food production, when in a big emission offset

program in collaboration with EDP that ran from 2006 to 2012, its forests were used to sequester 7000

tons of CO2/yr , aspiring to achieve the goals set by Portugal under the Kyoto Protocol7. Agricultural

activities of the farm are a complement to raising livestock, which is the main part of the portfolio.

Innovative management techniques such as monitoring of the movement, production and reproduction

of the animals are implemented. The stress is put on animals’ welfare and the animal feed is heavily

based on grazing, with little supplementation of compound feed (less than 4% of the total feed) (Simões,

2019).

The forest area includes a semi-natural oak forest. Two big fire events on the farm’s site, one in 80’s

and the other in 1996, wiped out around 200 ha of the original oak forest, that has been since then

regenerating mostly through natural processes. The management of the forest is focused on the

reduction of fire risk, increase of carbon sequestration, and biodiversity conservation. Vegetation cover

and level of development is heterogenous, from areas with an already developed tree cover to open

areas dominated by shrubs. Because the forest is relatively young (25-40 years after fires), young trees

are dominant and often accompanied by dense understory, which increases their vulnerability to fire

spread and requires management measures to reduce that risk, namely the regular removal of shrub

cover. The use of livestock for biomass regulation is now being implemented as a part of an ongoing

project by the SILVPAST Operational Group8, which is aimed at the sustainable management and

restoration of the oak forest. Grazing management, enhanced by monitoring of animals’ real-time

location with GPS collars, is expected to contribute to better soil fertilization, through nutrient inputs and

recycling, further helping with soil restoration and CO2 retention. Besides that, targeted grazing could

help to regulate the vegetation structure, open trails, trample down shrubs and consequently reduce the

risk of fire. The potential impact of the presence of animals is now being investigated also within the

forest site. A possibility to install biodiverse pastures in forest clearings, in order to maintain open

5 https://www.terraprima.pt/en/sobre-nos/
6 https://dre.pt/web/guest/pesquisa/-/search/259760/details/normal?q=DecretoLei+n%C2%BA%2037%
2F2013
7 https://www.terraprima.pt/en/projecto/13
8 https://www.terraprima.pt/pt/projecto/23

https://www.terraprima.pt/en/sobre-nos/
https://dre.pt/web/guest/pesquisa/-/search/259760/details/normal?q=DecretoLei+n%C2%BA%2037%2F2013
https://dre.pt/web/guest/pesquisa/-/search/259760/details/normal?q=DecretoLei+n%C2%BA%2037%2F2013
https://www.terraprima.pt/en/projecto/13
https://www.terraprima.pt/pt/projecto/23

 5

(firebreak) areas through grazing (by both, wild herbivores and cattle), has been brought up but has not

yet been implemented.

Furthermore, the Forest Fire Protection Program and Fuel Management is an important part of the

Quinta da França’s agenda. Along with the periodic shrub control, the other important interventions are

a good road network and strategic distribution of low fuel content plots (e.g. fuel management strips,

agricultural plots or rocky pastures and outcrops). That is why grazing management and land planning,

such as implementing forage spaces for cattle in the forest area, in conjunction with the forest's fire

protection structure is one of the exploration objectives for the fuel management, that has a potential to

reduce the costs of vegetation control and fire prevention (Terraprima -Sociedade Agrícola Lda., 2012).

1.3 Challenges

To implement grazing and vegetation management in the most efficient way, regularly updated land

cover maps are necessary. Mapping the vegetation cover is, however, a challenging task, especially so

in case of shrubs. Shrubs, or bushes, are a very broad and heterogeneous group of perennial woody

plants. They come in various shapes and sizes and form complex clusters of individuals, which makes

it difficult to map and monitor their growth. Moreover, unless they clearly stand out from their

environment, such as in a desert (Guirado et al., 2017), they are difficult to delimit from the surroundings

(Ayhan & Kwan, 2020; Hellesen & Matikainen, 2013). This becomes especially an issue in an intricate

diverse forest environment containing a lot of mixed classes and unclear boundaries among them. Big

intra-class variance and at the same time low inter-class overlapping of shrubs’ spectral signatures make

the detection harder even for machine learning models and often lead to misclassification of vegetation

types. The research on land cover mapping of complex ecosystems containing mixed vegetation classes

is scarce, which leads to an absence of labelled datasets in this domain and thus the need to create

them for a specific task by oneself. Due to the features of shrub vegetation and of the land cover

patterns, this task is a time-consuming process, but also very strenuous in terms of visual recognition

from remotely sensed imagery. On the top of that, depending on the time and cost constraints, it may

lead to an insufficient amount of labelled data and thus the need to artificially increase their volume by

heavy data augmentation.

1.4 Objectives

The aim of this thesis is to develop a method for high resolution mapping of land cover in a forest area

with heterogenous land cover composition, with a focus on fire prone shrub vegetation. A classifier of

the target vegetation type (i.e. shrubs) in the areas susceptible to fire will be created based on exemplary

data from UAV imagery, that can recognize the corresponding patterns in new images. Maps of

vegetation cover will then serve as a foundation for better informed landscape planning and grazing

 6

management and for research of innovative ways of integrating livestock production, biodiversity

conservation and fire prevention in fire prone landscapes in the Mediterranean regions.

The main objectives and contributions of this work are:

I. Classification of fire-prone vegetation type (shrubs) from natural color UAV images – creating

manually labeled dataset for training, validation and testing, using semantic segmentation;

II. Using supervised learning approach to train a CNN (U-net) to automatically detect the key

vegetation type in new images;

III. Developing a method to increase the detection accuracy of shrubs in the specific type of

ecosystem;

IV. Evaluating the feasibility and performance of the detection of an irregular shrub cover in a

complex heterogeneous landscape.

1.5 Structure of the thesis

This work is organized in seven sections as follows: Section 1 consists of a general introduction,

motivation and presents the case study. A review of main concepts and related works in the field is

provided in section 2. A description of applied methods, used materials and their development can be

found in section 3. Section 4 explains further in detail the performed experiments, their purpose,

underlying assumptions and the used data. Results of the experiments are then presented in section 0

and discussed more in depth in section 6. Lastly, conclusions and recommendations for a future work

are presented in section 7.

 7

2 Related work

Technological advancements have significantly improved our understanding of the planet.

Developments in fields such as remote sensing, computer vision, deep learning, and computer hardware

bringing low-cost and high-performance GPUs are interrelated and gave rise to new possibilities of

monitoring the earth surface. The image classification that recognizes the content of aerial images plays

an important role in applications as diverse as updating maps, improving urban planning, assessment

of land use changes, environment monitoring and even disaster relief. Rapid developments in remote

sensing are bringing along ever-growing volumes of unlabelled high-resolution data that are unfeasible

to process by humans and still pose a challenge for the computer vision to accurately interpretate them.

Other challenges include small labelled datasets of interest, the character of data and the challenges

resulting from the used machine learning algorithm (unsupervised and supervised). While unsupervised

learning methods cluster scenes of interest, with supervised methods the model in trained on specifically

hand-crafted features that describe the image content locally (Volpi & Tuia, 2017). Supervised

classification is the state-of-the-art method of land cover mapping (Stoian et al., 2019) and is used in

this thesis.

2.1 Land cover mapping

Satellite remote sensing is an effective way of acquiring data for various land cover mapping applications

(Ahmed & Noman, 2015; Fröhlich et al., 2013; Kussul et al., 2017; Vanjare et al., 2014). Different

satellites have different qualities, for example Sentinel-1 offers high spatial resolution, while Sentinel-2

offers high revisit time (Gbodjo et al., 2020). However, satellites are generally continuously improving in

these terms and some studies (Gbodjo et al., 2020) are also trying to exploit the fusion of multi-source

data to benefit from the different features and improve the performance. Satellites have an advantage

of the capacity to map large areas at the same time, but their biggest drawback is resolution that is still

coarse for some applications, they suffer from cloud cover and they are limited by fixed-timing and costly

data acquisition (Matese et al., 2015). These issues are resolved by a newer platform of unmanned

aerial vehicles (UAVs).

Although originally developed for military purposes, drones, or UAVs, have become an important

commercial tool for monitoring, revolutionizing the acquisition of fine-grained data thanks to their high

spatial resolution. It is a low-cost, low-impact solution that is highly flexible and enables data collection

also in difficult to access areas. This versatile technology can be used for monitoring and analysis of

small ecosystems to large areas and even a climate change. Therefore, UAVs found their place in

various fields including ecology and conservation of wildlife (Getzin et al., 2012; Mangewa et al., 2019),

agriculture and forestry (Csillik et al., 2018), firefighting (Kinaneva et al., 2019) and also disaster zone

mapping (Kerle et al., 2019). Unlike satellites, UAV-based mapping is often conducted at a local scale

(Brandt et al., 2020) and faces several other technical challenges. Some of their biggest disadvantages

 8

are power limitation, low flight time, small payload, low spectral resolution and sensitivity to atmospheric

conditions (Mangewa et al., 2019; Paneque-Gálvez et al., 2014). Important are also accurate positions

and flight heights, that influence the sensor’s accuracy. E.g. flying at higher altitudes makes observations

more sensitive to the vehicle’s motion and can cause motion blur (Hung et al., 2014). Flight mission

planning and execution are crucial and the photogrammetric processing of the imagery is, due to

variations in levels of image overlap and relief displacement, challenging as well. Last but not least

drones pose serious ethical, security and safety issues.

The applications of remote sensing imagery solely in vegetation assessments are very diverse,

including the monitoring of species after fire events (Pérez-Rodríguez et al., 2020; Sankey et al., 2017)

and the health condition of vegetation (Baena et al., 2017; Malenovský et al., 2017), mapping of

ecosystem structure and function (Langford et al., 2019), plant communities (Lopatin et al., 2017) and

the species at individual level (Cao et al., 2018), assessing biodiversity (Getzin et al., 2012), plant

diseases (Sladojevic et al., 2016) and many more.

2.2 Bands, indices and data fusion

When it comes to land cover mapping, utilizing different bands and their combinations, so called indices,

can be a powerful tool for identification of many classes. Specifically, for the classification of natural land

cover types useful bands are blue (448-510 nm), that differentiates soil and rock surfaces from

vegetation; green (518-586 nm), that separates vegetation (such as forest or croplands with standing

crops) from soil; red (640-670 nm), that senses chlorophyll absorption, discriminates vegetation and soil

and highlights barren lands; yellow (590-630 nm), that separates vegetation and soil, highlights barren

lands and separates croplands with standing crops from bare croplands with stubble. Healthy plants

reflect NIR (772-954nm), thus it is a great band to use in ecology purposes or for estimating the burn

severity (Pérez-Rodríguez et al., 2020). Information from this band is essential for important indexes like

normalized difference vegetation index (NDVI), that is widely used to assess the presence and health

state of a vegetation. SWIR (1195-2365nm) is another band, typically present in satellite imagery, that

is suitable for distinguishing wet from dry earth and rocks from soils (Iglovikov et al., 2017).

More bands naturally contain more spectral information, that is why multispectral data are popular in

land cover classification tasks (Ashapure et al., 2019; Mahdianpari et al., 2018; Pérez-Rodríguez et al.,

2020). However, other types of data offer different qualities, such as high-resolution information present

in panchromatic images, which makes data fusion an interesting approach to exploit all the useful

properties of the available data. Gaetano et al. (2018) fuses high-resolution panchromatic and

multispectral data in their two-branch neural architecture MultiResoLCC, which shows better

performance on land cover classes such as orchards, meadows, herbaceous savannah and different

types of crops. Iglovikov et al. (2017) went even further and in their work fused not only panchromatic

and multispectral images, but also RGB channels and reflectance indices.

 9

2.3 Convolutional neural networks

Advancements in remote sensing and the growing availability of remote sensing data require automated

solutions to process such large volumes of information. The answer comes in the form of convolutional

neural networks.

Convolutional neural networks, CNNs or ConvNets, are state-of-the-art deep learning algorithms

mimicking biological neural structures developed for image processing and computer vision tasks

(Kattenborn et al., 2020). While the history of CNNs has started decades ago, they were not practical

due to their memory requirements and the lack of available training data in the past. Recent

developments in the computer vision, graphical processor units (GPUs) and growing amounts of data

that are publicly available resulted in their revival in 2012 (Reina et al., 2020). Their capacity to handle

growing quantities of earth observation data in an automated way makes them a promising solution in

many fields. However, their drawback of requiring huge amounts of training data remains and poses

serious problems especially in cases of image segmentation, where training data acquisition is still

expensive and scarce. Creating pixel level segmentation masks is complicated, labour and time

intensive process (Ulmas & Liiv, 2020) and faulty labelling can become a great limiting factor (Rakhlin

et al., 2018). Even if it is still possible for the model to correctly identify a class even though it was

labelled incorrectly, as e.g. in the case of (Rakhlin et al., 2018), it will worsen the performance results

after comparing with the ground truth. Moreover, faulty labelling can become a serious danger in fields

like medical imagery (Ibtehaz & Rahman, 2020; Litjens et al., 2017) or autonomous driving (Treml et al.,

2016). Some of the ways to overcome the lack of training data are using a weakly supervised learning

method (Nivaggioli & Randrianarivo, 2019; Wang et al., 2020), transfer learning or a data augmentation

(Scott et al., 2017), that will be explained more in section 2.9. Other challenges of CNNs include

complicated tuning process, tendency to overfitting and still high computational requirements.

CNNs are an end-to-end solution that automatically learns local feature extractors over many examples

at different spatial scales (Flood et al., 2019), without the need for a feature engineering, improves

generalization and decreases the number of parameters due to weight sharing (Flood et al., 2019;

Nogueira et al., 2015). Their ability to encode spectral as well as spatial information makes them superior

to standard classifiers, such as random forests, that work solely with the spectral information

(Diakogiannis et al., 2020). CNNs have been successfully applied for image and scene classification,

segmentation and object detection (Hu et al., 2015; Stoian et al., 2019; P. Zhang et al., 2018; W. Zhang

et al., 2019).

A typical CNN consists of a stack of convolutions, activation functions and pooling layers. Convolutions

are an essential step in which the features are learnt in a hierarchical manner – first layers extract low-

level features, such as edges, lines and corners, while deeper layers learn increasingly more complex

features such as shapes, structures and entire objects (Nogueira et al., 2015). A non-linearity is

introduced by an activation function, the most popular one being ReLU (max(0, x)). Pooling layer then

reduces the dimension of the extracted features, fostering translation invariance (P. Zhang et al., 2018).

The most popular technique is MaxPooling that acts as a noise suppressant. It selects only dominant

 10

features, making the training more robust and decreasing the required computational power. Follows

the fully connected layers and a classifier layer, softmax, that outputs a vector of scores or probabilities

for each class. The training of CNNs is generally based on the prediction loss minimization, a loss

function that measures the difference between the output of the final layer and the ground truth (Guirado

et al., 2017). The most commonly used performance metric is accuracy, that is defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

where TP are true positives, TN true negatives, FP false positives and FN false negatives.

Another common metric is F1 score, a class-specific measure of segmentation accuracy, suitable for

unbalanced datasets. It is the geometric mean between precision (user’s accuracy) and recall

(producer’s accuracy) (Volpi & Tuia, 2017), defined as follows:

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

where:
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

and:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Some of the well-known architectures include LeNet, AlexNet, VGGNet, GoogLeNet, ResNet.

A common way of boosting the CNNs’ performance in land-cover classification is to combine them with

the height information (Maltezos et al., 2017) and a digital surface model (DSM) (Längkvist et al., 2016),

but there is an emerging group of neural networks that focuses specifically on semantic segmentation

tasks, i.e. pixel level segmentation, which is especially efficient in land-cover classification.

2.4 Segmentation networks

There are five types of image analysis based on the granularity of understanding the images 9. The most

coarse-grained is classification (Krizhevsky et al., 2017) of an entire image, outputting a discrete label.

Follows classification with localization (Sermanet et al., 2014), which outputs a discrete label and a

localization information usually in form of parameters of a bounding box (B-box). Object detection

(Girshick, 2015), that unlike the previous case can classify and localize more than one object in an

image. Semantic segmentation (Q. Zhou et al., 2019), that labels each pixel of an image with a

corresponding class and the resulting HR map is typically of the same size as the input image – a so

9 https://nanonets.com/blog/semantic-image-segmentation-2020/

https://nanonets.com/blog/semantic-image-segmentation-2020/

 11

called dense prediction. Finally, instance segmentation (Graham et al., 2019) is also a pixel level

classification but unlike the previous type it classifies each instance of a class separately.

Semantic segmentation is the most interesting one for the land cover classification tasks, able to learn

also spatial configuration of labels and class-specific structures (Volpi & Tuia, 2017). The detection can

be either of one specific class (Wen et al., 2017) or multiple classes at the same time (Paisitkriangkrai

et al., 2016). Two big remaining challenges of the existing methods are intra-class inconsistency and

inter-class indistinction (Yu et al., 2018).

One of the main research topics nowadays is how to provide pixel-level high-resolution segmentation.

Two approaches try to address this problem – 1.) using dilated (atrous) convolution and 2.) connecting

pooling and un-pooling layers, e.g. DeconvNet, SegNet or U-Net (Li et al., 2018). Among the first

networks focusing on semantic segmentation was a fully convolutional network (FCN) (Long et al.,

2015). It uses traditional CNN as a feature extractor but replaces the fully connected layers with up-

convolutions, producing spatial feature maps instead of classification scores, that are further up-

sampled to a dense pixel-wise output. Improvement of the FCN is already mentioned SegNet

(Badrinarayanan et al., 2016), that consists of an encoder part, extracting spatial features, and a decoder

part, up-sampling the feature maps. Similar to FCN and SegNet is a fully convolutional semantic

segmentation network U-Net (Ronneberger et al., 2015), that will be discussed further in the next

section. SegNet and U-Net are able to densely label every pixel at the original resolution of the image

thanks to their down-sample-up-sample architecture. High-level representations are learnt via

convolutions and then up-sampled back to the original resolution via deconvolution. These nets are

computationally efficient and able to learn spatial dependencies among classes. Their drawback is low

geometric accuracy (Stoian et al., 2019). Other approaches are presented by Audebert et al. (2018) and

their multi-scale FCN or L.-C. Chen et al. (2017) DeepLab with atrous convolutions for the semantic

segmentation.

2.5 U-Net

Building on so called skip connections first introduced by Long et al. (2015), Ronneberger et al. (2015)

created U-Net (hereinafter the original U-Net), an improved FCN that works with very few images from

a biomedical field. The combination of low level features with detailed spatial information and high level

features with semantic information improving segmentation accuracy, makes it a good choice for one-

class segmentation tasks (P. Zhang et al., 2018). The architecture consists of two symmetric paths –

contracting (left side) and expansive (right side), which give the network its characteristic U-shape. The

contracting path is a typical CNN architecture – it is a stack of two consecutive convolutions followed by

rectified linear unit (ReLU) and max pooling operations. This is the down-sampling part of the network,

where at each step the number of feature maps (kernels) doubles so that the network can learn more

complex features in the image, however at the cost of losing localization information. By increasing the

receptive field information of multiple scales (local and global) is gained and fused together (Zheng et

al., 2016). The expansive path, on the other hand, applies a sequence of skip connections that, unlike

 12

FCN that sums the features (Z. Zhou et al., 2020), concatenate the output of transposed convolutions

and corresponding feature maps from the contracting path; followed by two consecutive regular

convolutions with ReLU. This is the up-sampling part of the network, that acts as a compensation for

the previous max pooling layers. The localization information is reconstructed here and more precise

output is yielded. A final layer is (1 x 1) convolution that outputs densely labelled segmentation map with

a size equal to size of the input image. The architecture is depicted in Figure 2. Because max pooling

uses (2 x 2) sized filters, the input image has to always have an even height and width size. Authors

used large input tiles and reduced the batch size to a single image. Data augmentation, especially elastic

deformations that simulates a common tissue variation, was applied to the dataset. The model was used

with training datasets of 30 (512 x 512) px fully annotated images, and 35 and 20 partially annotated

images. The intersection over union (IOU) for partially annotated datasets was 92% and 77.5%,

respectively.

Figure 2 The original U-Net architecture. Blue boxes – multi-channel feature maps, white boxes – copied feature
maps, the no. of the channels is denoted at the top of the box, height and width at lower left edge of the box, the
arrows denote different operations. (Source: Ronneberger et al. (2015))

The encoder-decoder networks are widely used for semantic and instance segmentation (Volpi & Tuia,

2017; Z. Zhou et al., 2020). There are other examples of feature fusion methods than skip connections,

include wiring feature maps into a sort of grid in GridNet (Fourure et al., 2017); employing two streams

in the network – pooling, that carries the context information and residual, that carries full-resolution

information (Pohlen et al., 2016); and variations of this network (Jiang et al., 2019). U-Net has become

the state-of-the-art model for biomedical image segmentation tasks, but because of its ability to exploit

 13

both texture and spatial structure in high resolution imagery, it is used in other applications like land

cover classification, too (Garg et al., 2019).

There are many variations of its architecture. Zhou et al. (2020) presented UNet++, a built-in ensemble

of U-Nets of varying depths that partially share an encoder and have intertwined decoders. The

architecture overcomes the problem of unknown optimal depth of the network for different applications

and restrictive design of skip connections. The feature aggregation in decoders is more flexible and the

outputs are formed gradually, which helps Unet++ to outperform other compared U-Net architectures.

Chen et al. (2019) in their Channel-UNet proposed a spatial channel-wise convolution along the channel

of feature maps to extract the spatial information. By converging this information and feature maps from

the original U-Net that serves as a backbone, the network effectively mitigates over- and under-

segmentation problem in medical images. Another experiment with network connections are Plus

connections between the successive Down and Up blocks in a DeepUNet (Li et al., 2018), that avoid

the convergence on the local optimal solution, improving the performance of very deep networks in

complex image segmentation tasks. MultiResUNet (Ibtehaz & Rahman, 2020) better handles medical

images with noises, perturbations or lack of clear boundaries and ResUNet-a (Diakogiannis et al., 2020)

enhances the understanding capability of the network by including pyramid scene parsing pooling,

residual connections, atrous convolutions and multi-tasking inference, similarly to ASPP-Unet (P. Zhang

et al., 2018), that learns contextual information at multiple scales using Atrous Spatial Pyramid Pooling

technique. The newest and most exciting modification is nnU-Net (Isensee et al., 2020), a network that

automatically configures itself, including pre-processing, network architecture, training and post-

processing for any new task.

2.6 Shrub cover mapping

The research on how state-of-the-art classification tools perform in complex land cover mapping tasks

is generally scarce (Mahdianpari et al., 2018). Shrubs class is a very general and heterogeneous group

of vegetation with individuals of variable shapes, sizes, and distribution patterns, forming irregular and

complex clusters of individuals (Guirado et al., 2017). High intra-class and low inter-class variance is a

challenge causing difficulties to distinguish them from their surroundings (Hung et al., 2014) or other

vegetation classes. Mahdianpari et al. (2018) used multispectral data, containing more complementary

information, as a way to alleviate the problem of classification of spectrally similar vegetation types.

They also found InceptionResNetV2 as the most efficient state-of-the-art convnet (compared to

DenseNet121, InceptionV3, VGG16, VGG19, Xception and ResNet50) for classifying complex

multispectral remote sensing wetlands scenes, when it reached an F1 score of 93%. In their pursuit of

maximizing the distinction between the target vegetation type (weeds) and the surroundings, Hung et

al. (2014) proposed to consider phenological stage highlighting the differences in the vegetation

appearance as the most promising approach, but also performing the survey at lower flight altitudes

(below 100m (Ashapure et al., 2019)) or using higher resolution sensor to obtain more detail.

 14

A study with similar objective to this work – shrubs detection is (Guirado et al., 2017). Objects of interest

are Ziziphus lotus shrubs, however, it is surrounded by bare soil with sparse vegetation unlike shrubs in

my case, that are located irregularly in a complex heterogeneous landscape. After combining

GoogleLeNet with data augmentation, transfer learning (fine tuning) and pre-processing, F1 score of

97% was achieved. Pre-processing techniques improving the detection performance the most were

background elimination and long-edge detection, and only random flipping, scaling, cropping and

brightness were used for data augmentation.

2.7 Hyperparameters

Hyperparameters are variables which determine the structure of the network and how is it trained.

Among the most commonly tuned hyperparameters related to network structure are number of hidden

layers and units (or neurons), dropout and activation function. Adding layers between the input and

output layer and increasing the number of units can prevent underfitting and generally improve the

performance, however, deeper neural networks might become more difficult to train (Bengio, 2012).

Garg et al. (2019) used 19 padded 5x5 convolutional layers in their mUnet and outperformed state-of-

the-art U-Net and fully convolutional neural network (FCN) in a land-use-land-cover (LULC)

classification task. P. Zhang et al. (2018) found using 64 initial feature maps and 11 layers as optimal

for the overall accuracy, regardless of the input image. Dropout is a regularization technique that

randomly ‘drops out’ a given percentage of neurons to avoid overfitting. Co-adaptations among neurons

are reduced and each neuron is made to learn more robust feature extractors (F. Zhang et al., 2015).

Generally, the values are between 20-50%10, lower dropout rates can have too little impact, while too

high ones can cause an inefficient learning. Activation function introduces non-linearity into learning.

Fast rectifier activation function (ReLU) is the most popular choice for hidden layers, while sigmoid is

commonly used in the output layer of binary and softmax of multi-class predictions. Optimizers belong

to this category of hyperparameters, too. Well-known Stochastic Gradient Descent (SDG) has a

downside of a need for a good learning rate tuning, which is solved with optimizers such as Adam, that

have adaptive learning rate. Adam is also computationally efficient, not memory-demanding and can

therefore handle well large data or a lot of parameters (Kingma & Ba, 2017). Data preprocessing, that

is further addressed in the next section, can be also viewed as a model hyperparameter.

Learning rate, number of epochs or batch size are only some examples relating to the training. The

speed of updating network’s parameters is defined by learning rate. Large values lead to fast learning

but risk to miss the minimum of the loss function (‘Exploding gradient’), while too low values slow down

the training and may also fail to converge (‘Vanishing Gradient’)11. Generally, 0.01 (Bengio, 2012) is a

good starting point, but decaying learning rate is the optimal solution. The number of epochs determines

10 https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hyperparameters-
in-a-deep-neural-network-d0604917584a
11 https://towardsdatascience.com/neural-networks-parameters-hyperparameters-and-optimization-
strategies-3f0842fac0a5

https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hyperparameters-in-
https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hyperparameters-in-
https://towardsdatascience.com/neural-networks-parameters-hyperparameters-and-optimization-strategies-3f0842fac0a5
https://towardsdatascience.com/neural-networks-parameters-hyperparameters-and-optimization-strategies-3f0842fac0a5

 15

how many times the network sees the whole training dataset during learning. Decreasing validation

accuracy despite increasing training accuracy is a sign of overfitting and the training should be stopped.

This is another popular hyperparameter to tune but also brings along the dilemma of an increased

performance at the cost of an unevenly increased training time. Hussain et al. (2019) yielded 5.5%

higher accuracy with increasing the number of epochs fourfold, which came at the expense of a longer

training time. Batch size is the number of samples in subsets of training data that affects the speed of

learning. Larger batch sizes tend to slow down the convergence and generalize worse on test data,

creating a so-called ‘generalization gap’. Smaller batch sizes generally perform better, with 32 as a good

default value (Keskar et al., 2017; Masters & Luschi, 2018). While some (Bengio, 2012) argue that it

can be optimized independently of other hyperparameters, others (Goyal et al., n.d.) suggest that

treating learning rate as a function of batch size can minimize the generalization gap and speed-up the

training. Nevertheless, using yet another optimization method – the batch normalization (Ioffe &

Szegedy, 2015), one can use bigger learning rates and batch sizes, while improving the performance

and speeding-up the training (Iglovikov et al., 2017; Ramanath et al., 2019; Volpi & Tuia, 2017).

Hyperparameter optimization is the last step before getting the final results on a test data, that aims to

improve the performance of a model and is restricted by time, money and computational power. The

configuration of model hyperparameters is generally problem specific and can’t be estimated from data,

thus is often set arbitrarily by the user before starting the training. The most widely used automatized

strategies for finding the best configuration of hyperparameters is grid search and random search. The

former evaluates every possible configuration of parameters specified in a grid, which makes it slow,

computationally expensive and unable to work with many hyperparameters. On the other hand, the latter

replaces the grid with random sampling, which is a more efficient approach able to work with many

hyperparameters and explore wider space in less time. However, both share the disadvantage of each

guess being independent from the previous ones12. This can be better handled with manual search that

can better exploit the previous experience but can get expensive and tedious. Lastly, the Bayesian

optimization aims to solve all of the above-mentioned problems by predicting the target metrics from

hyperparameter configuration.

2.8 Pre-processing

Due to memory limitations of hardware, it is a common practice to tile or down-sample large images

before they are fed into the model. However, these methods can cause unpredictable errors in the

model’s output.

Tiling presents additional hyperparameters (such as tile size and the amount of overlap) and can

degrade the classification results, especially in the border regions (Reina et al., 2020). U-Net, for

instance, can perform poorly near borders of images because of a bias resulting from padded

convolution (Stoian et al., 2019). Therefore, introducing a certain amount of tile overlap can help to

12 https://www.datacamp.com/community/tutorials/parameter-optimization-machine-learning-models

 16

overcome this issue (Rakhlin et al., 2018). Hung et al. (2014) reported improved classification accuracy

with the tile size that could fully capture individual plants from the target class but warned from using too

big tiles that could introduce noise from neighbouring plants. Also according to Bao (2019) the receptive

field depends on the size of the object of segmentation. He achieved higher segmentation accuracy and

better localization by employing two different sizes of receptive fields in his dual-branch FCNN – small

for segmentation of small objects and large for segmentation of bigger objects and better localization.

Conversely, for mapping the vegetation extent Flood et al. (2019) argue that the tile size should be

bigger than the objects and should cover groups of the individuals from the target vegetation class,

rather than individuals. The resolution of the imagery is an important factor to be considered when

deciding the objective of the task. Because the spatial structure of canopies is related to size of the

individual relative to the pixel size (Fricker et al., 2019), clusters of similar pixels will represent individual

trees in HR imagery, while they will be able to represent only entire stands of trees with a coarser spatial

resolution. Another important thing to look for is the amount of context. Larger tiles perform better

because they capture more context of the image and the color and texture features are more consistent

(Hung et al., 2014). P. Zhang et al. (2018) in their binary classification used only images containing both

classes to enhance the efficiency of the training. The success of vegetation detection lies in the

comparison of differences between the textural and structural characteristic of the target class and the

surrounding vegetation (Kattenborn et al., 2020). This means that even RGB imagery that has low

spectral but high spatial resolution can be very useful in vegetation mapping, which is great news for

low-cost UAV datasets. Even better performance can be presumed by combining high spatial resolution

sensors with high spectral resolution (multi- or hyperspectral data). P. Zhang et al. (2018) demonstrated

that 8-band datasets achieved the highest overall accuracies, decreasing for 4-band, CIR and finally

RGB data.

Multiscale saliency of a patch affects the classification performance (Kim et al., 2011; F. Zhang et al.,

2015) and could be also considered as a hyperparameter. Down-sampling, reducing the dimensionality

of an image, enables faster processing of data or capturing a broader context, which maintains large

structural elements but loses some fine detail. Therefore, the suitability of this approach appears to be

highly case-specific. While for some tasks filtering out only the most pronounced information can boost

the performance (Müllerová et al., 2017; Rakhlin et al., 2018), for others where the information contained

within the object is as important as the context it might not be as desirable (Reina et al., 2020; Shaban

et al., 2019; W. Zhang et al., 2019). The information loss and object distortion cause by resizing of large

tiles can be undesirable also in case of using pre-trained networks (Zheng et al., 2016). However, it

seems that the target class is not the only factor that affects rescaling, but also the season (in vegetation

classification), pixel resolution, type, depth and some parameters of the network and last but not least

the objective of the study and its respective tradeoffs. In a study of a giant hogweed (Heracleum

mantegazzianum) (Müllerová et al., 2017), a monocarpic perennial herbaceous flowering plant,

resampling helped to resolve the problem of the noise springing from very fine spatial resolution of UAV

images, that was overwhelming the relevant spatial patterns and consequently hampering the

classification accuracy. However, this approach was useful only in autumn and in slightly blurred images.

In the summer images the success rate dropped, likely because merging pixels into mixed pixels during

 17

this phenological stage created more confusion in vegetation recognition. Rakhlin et al. (2018) found

scale 1:2 as a perfect tradeoff between image resolution, receptive fields and depth of the model and

Reina et al. (2020) encountered a convergence of F1 score at this scale, however, at the same time the

latter study and others (W. Zhang et al., 2019; Zheng et al., 2016) also got the best results with almost

no re-scaling.

Balancing a dataset can be considered as another pre-processing method aiming to improve the results.

It means obtaining a more even distribution of classes in the dataset. This can be achieved by under-

sampling the majority class or over-sampling the minority class. Other techniques include interpolating

minority-class data points or penalizing misclassification of the minority class. While the under-sampling

method reduces the number of samples in the abundant class and can lead to a loss of a critical

information, over-sampling grows the number of samples in the minority class and can lead to overfitting

13. Which approach to choose depends on the problem and amount of available data. Wei & Jr (2013)

achieved the highest accuracy by using balanced training dataset (50% of the dataset was the target

class) with any proportions of the target class in the test data. Others (F. Zhang et al., 2015) simply

exclude the patches that don’t contain the target class entirely from the dataset.

2.9 Data augmentation and transfer learning

One of the main problems in the remote sensing domain, the lack of labelled data for model training,

can be overcome by data augmentation or transfer learning (Scott et al., 2017).

Data augmentation is a technique of artificially increasing the size of a dataset by applying label-

preserving random transformations to the original images. The model has access to a bigger volume of

labelled data to learn from, potential correlation between patches in the batch are reduced, and the

model sees more diverse aspects of the data, allowing it to encode the desired invariance. As a result,

more robust feature descriptors (F. Zhang et al., 2015) are created and the generalization ability is

improved (Volpi & Tuia, 2017). New images can be generated using many different strategies, such as

rotating, flipping, zooming or cropping. However, the choice should be relevant and meaningful with

regards to the type of the problem. For example, the original U-Net (Ronneberger et al., 2015) uses

elastic deformations on the available biomedical data, because it is the most common variation in tissue

and it efficiently simulates realistic deformations. For multi-class labelling tasks, e.g. land cover

classification, contextual information at multiple scales is important since features of different land cover

types and ground objects usually exist at various scales (P. Zhang et al., 2018). Diakogiannis et al.

(2020) apply rotations and zooming in/out (a sort of re-scaling, that was already discussed in the

previous sections) on the dataset containing mostly urban land cover classes, Kattenborn et al. (2020)

use rotating, shearing (0-0.2 radians), shifting (0–15%) and horizontal flipping in the assessment of plant

species and (Li et al., 2018) advocate primarily for shift, rotation and scale variations. Similarly as in

case of tiling, data augmentation also can affect predictions in border regions. Reina et al. (2020)

13 https://medium.com/analytics-vidhya/what-is-balance-and-imbalance-dataset-89e8d7f46bc5

 18

reported that the results of a flipped image differed from the ones in the original image. On the other

hand, Long et al. (2015) argued that random mirroring and “jittering” the images by translating them up

to 32 px did not have a noticeable impact on the performance. The usefulness and type of data

augmentation may, therefore, depend on the problem domain. Augmentation can be applied offline, in

a pre-processing stage, or online, so called real-time augmentation. The former is usually used with

small datasets and the augmented images become a part of the training set, so the model sees them

multiple times. The latter is applied to big datasets and does not include saving the images on disk, the

model sees different images at each epoch and therefore generalizes better14.

Transfer learning is a supervised learning method, that uses weights from a network that was already

trained and fine-tuned, usually on a bigger dataset with samples similar to the ones we want to apply it

to and offers a promising alternative to feature design. It can be implemented using pre-trained model

as is, using it as a feature extractor or fine-tuning it15. As compared to a network trained from scratch

that starts with randomly initialized weights, employing transfer learning cuts down costs and training

time, while achieving high performance even with small sized datasets (Hussain et al., 2019; W. Zhang

et al., 2019). Hussain et al. (2019) observed almost double accuracy using the pre-trained model even

on image categories different from the ones in the dataset that the model was originally trained on.

Transfer learning has been enabled with the advent of publicly available large datasets, among the most

famous ones ImageNet16, CIFAR17 or MNIST18 that gave rise to pre-trained models, such as VGG-16,

Inception-v3 and ResNet50, amidst the most popular ones for the image classification task15. In the

specific case of U-Net, one of these networks is simply used as the encoder. One such example is

TernausNet (Iglovikov & Shvets, 2018), that uses VGG11 network pre-trained on ImageNet as an

encoder, while in other works (Ulmas & Liiv, 2020) a pre-trained ResNet50 is used. The latter

experienced the worst F1 scores of scrub and herbaceous vegetation (0.16), coniferous forest (0.32)

and bare rocks (0.41) classes, denoting that these land cover types may be a challenge for pixel level

segmentation. High resolution aerial images can bring along big intra-class and small inter-class

variances in pixel values, which can cause difficulties in discrimination of some land cover classes

(Diakogiannis et al., 2020; Mahdianpari et al., 2018). Transfer learning is also helpful in applications

where it is problematic to collect a large volume of training data.

14 https://towardsdatascience.com/data-augmentation-techniques-in-python-f216ef5eed69
15 https://towardsdatascience.com/beginners-guide-to-transfer-learning-on-google-colab-
92bb97122801
16 http://www.image-net.org/
17 https://www.cs.toronto.edu/~kriz/cifar.html
18 http://yann.lecun.com/exdb/mnist/

https://towardsdatascience.com/beginners-guide-to-transfer-learning-on-google-colab-92bb9712280
https://towardsdatascience.com/beginners-guide-to-transfer-learning-on-google-colab-92bb9712280

 19

3 Materials and methods

This section describes materials and methods used in this thesis. The work consists of four main parts:

• labelling the data,

• creating the dataset,

• training an ML model for an automatic classification and

• developing a method to improve its performance on my data.

First three sub-sections describe the geographical area under study where photos were taken, the data

themselves and the initial data visualization with QGIS.

The following sub-section describes the tools and methods used for data labelling and creating the main

dataset and its sub-datasets and explains the rationale behind these processes.

The last part details the U-Net and justifies why I used this particular CNN.

All the methods used to improve the performance are described in the section 4.

3.1 Study area

Quinta da França is a 500 ha property located near Covilhã in Castelo Branco District, surrounded by

the Zêzere River and Ribeira de Caria stream. The local climate is mild and generally warm, with an

average annual temperature of 13.5°C and precipitation around 1082 mm19. The coldest month,

January, with an average temperature of 6.2°C, is also the wettest (162 mm of rainfall). On the other

hand, the warmest months, July and August (average temperature of 21.9°C and 22.2°C, respectively),

are the driest ones of the year (10 mm of rainfall) and are therefore critical regarding the risk of forest

fires.

As it can be seen in Figure 3, the farm is divided into three main zones:

1. Quinta de Cima: Northwest area with beef production and permanent irrigated grazing pastures.

Corn (for silage and grain) and hay fodder are produced here.

2. Quinta de Baixo: South area with another cattle production and all sheep production. In this

area are permanent irrigated pastures, rainfed, natural pastures and improved natural pastures.

3. Serra: Northeast area with oak forest.

19 https://en.climate-data.org/europe/portugal/covilha/covilha-6944/

https://en.climate-data.org/europe/portugal/covilha/covilha-6944/

 20

Figure 3 Left: Location of Quinta da França in Portugal (Source: QGIS). Right: The zone of the oak forest Serra
(red) (Source: Terraprima -Sociedade Agrícola Lda., 2012)

The farm’s sheep and bovine animals graze at Quinta de Cima and Quinta de Baixo (Simões, 2019).

The forest in Serra, previously closed for animals, was divided by a fence in January 2018 into two

parcels of about 100 ha each: a southern grazing parcel, to test the effect of cattle presence on

vegetation structure (grazing, trampling, etc.), and a northern parcel without grazing (wild herbivores are

present but in low density)20. In June 2018 the grazing parcel was open to a group of about 60 cows.

The animals maintain permanent access to the site since then. However, the use of the forest space by

cattle tends to increase in late spring-early summer (May-July), possibly related to the simultaneous

availability of resting areas, with shadows and green forage. Mechanized removal of shrubs along main

tracks (dirt roads) is maintained at both parcels.

The dominant plant species in the forest site is pyrenean oak (Quercus pyrenaica), that is naturally

occurring in the region. Maritime pine (Pinus pinaster) plantation area is also an important component

of the forest cover. In the riparian areas, black alder (Alnus glutinosa) and ash (Fraxinus excelsior) are

the key species. In the shrub stratum, besides the dominant brooms species (Cytisus multiflorus and C.

scoparius), there can be also found hawthorn (Crataegus monogyna), blackberry (Rubus ulmifolius) and

grey willow (Salix atrocinerea).

20 https://www.terraprima.pt/pt/projecto/23

https://www.terraprima.pt/pt/projecto/23

 21

The images were taken in the test area, marked as a red star in Figure 4, which is located within the

grazing parcel – the area of interest for the study.

Figure 4 Aerial view of Quinta da França (yellow border), oak forest perimeter (red border) and grazing parcel
(white border). The red star depicts the location of the test data used in this thesis (Source: GO - SILVPAST -

Terraprima, n.d.)

3.2 Data description

The images were acquired by hexacopter with two cameras: VIS GITUP2 camera with RGB filter (370

– 680 nm) and 170° lens (fish-eye) and NIR Mapir Survey2 NDVI camera (Red: 660 nm, NIR: 850nm),

with 90° lens. 16MP ((4608 x 3456) px) sensor Sony Exmor IMX206 (Bayer RGB) was used. The flight

altitude relative to the take-off point was 120m, velocity 5m/s and photos were taken every 5s. The drone

was assembled by Terraprima.

Two test sets of images were provided by Terraprima for this thesis: 1) a set of samples of the

orthomosaic for the test area and 2) a set of original images that compose the orthomosaic.

 22

The first set consisted of nine (3361 x 3361) px orthomosaics in TIFF format. The test area was clipped

from the orthomosaic of the full forest area, which was composed by images captured in several flights

with an approximate scan area of 20 ha per flight. All nine samples covered an area of approximately

(200 x 200) m, with spatial resolution 4 cm. The size of the area was defined arbitrarily, large enough to

include different land cover types and small enough to be fast to process and to test the methods. The

images in the set were:

• R and NIR band and NIR composite image taken in July 2019;

• R and NIR band, NIR composite and RGB image taken in January 2019;

• NIR and RGB image from July 2016.

Example of an image taken from both of the mentioned cameras can be seen in Figure 5 below:

Figure 5 Sample RGB image taken with VIS camera (left) and NIR image taken with NDVI camera (right)

Flights took place in different seasons to exploit the differences due to vegetation phenology. Namely,

to take advantage of the sharp distinction between perennial (green) shrubs and the senescent (yellow)

herbaceous vegetation in the summer, and to take advantage of the deciduous canopy cover in the

winter to facilitate spotting shrubs under the deciduous oak trees. Even though the seasonal features

were not expressed enough in the images to improve the visual interpretation of the data for labelling,

since the detection accuracy depends on phenological phase of the vegetation that can even partly

compensate for lower spectral resolution (Müllerová et al., 2017), some of these features, that were not

readily perceived by the human eye, can still facilitate the ML classification and help to achieve better

performance. Naturally, high spectral resolution still plays an important role in vegetation mapping,

especially for less distinct species. Software Agisoft was used for orthorectification. Due to continuous

technical issues with these images, likely resulting from the overlapping discrepancies in the

orthomosaic, I abandoned the work with this set and substituted it with the second set.

The second set was composed of 21 (4608 x 3456) px original TIFF images in RGB, which were

captured for the same test area during a single flight, that took place in August 2019. Because of the

small size of the test area and the overlap between consecutive images, the images were highly similar.

The disadvantages of these images are fisheye and motion blur, which causes distortion and makes the

 23

annotation more challenging, especially so in peripheral areas of the images. Later, I obtained two more

sets of data for final testing: 49 winter images from December 2019 and 45 summer images from August

2020.

Unlike hyper- or multispectral datasets used in many vegetation cover classification studies (Fricker et

al., 2019; Langford et al., 2019; Makantasis et al., 2015; Yue et al., 2015), this thesis uses ordinary RGB

images. Limited number of spectral channels makes the presented method more convenient for use in

combination with most aerial imaging systems, including off-the-shelf UAVs, and wider range of data.

3.3 QGIS data visualization

In the initial phases of the work I used Semi-Automatic Classification Plugin (SCP), a free open source

QGIS plugin for supervised land cover classification of remote sensing images. The objective was to

fast and easy visualize and benchmark the classification performance of a working land cover

classification tool on my data, and to spot classes that may have a higher risk of being misclassified.

A broad spectrum of image raster management is available in QGIS; application of colour ramps, raster

calculator, band manipulation and control of various features such as brightness and contrast. All these

have a potential to ease image interpretation. The SCP was a number one choice for classification

exercise, because it offers several tools for image pre- and post-processing and it was developed for

the purposes highly aligned with the ones of this thesis.

The experiment was conducted on a small scale using five images from the first dataset. I tested RED

and NIR bands from the NIR images from January and July 2019 and RGB from July 2016 for

visualization purposes. In total, I created seven classification projects, inspecting different settings with

two main purposes – clearer data visualization for improved image interpretation and better classification

results. Four main classes were identified: trees, shrubs, shadows and ground. The ground class is an

aggregate of bare soil and herbaceous cover, that is mostly senescent in the late summer. Figure A 1

and Figure A 2 in the Appendix are examples of using different channel settings for easier recognition of

certain classes. Table A 1 in the Appendix is a summary of tested tools with the most significant impact

and the corresponding conclusions.

Despite achieving more recognizable vegetation and bare soil visualization, I did not manage to produce

images with clear distinction between shrubs and trees. In general, the objects from different classes

are easy to confuse and exchange, especially pixels in border parts. The target group – shrubs, due to

its structure, size and distribution often exhibits features similar to other classes and the information

contained in the within-class pixels can differ widely, i.e. there are small inter-class and high intra-class

diversities, which causes a high level of confusion. The main problems with identifying objects from

individual classes during labelling are summarized in Table 1.

 24

Table 1 The main problems with identifying objects from individual classes during labelling

 Classification

Trees Shrubs Shadows Rocks Ground

Reference
(visual

classification)

Trees

Darker
border parts
Possible
misclassifi-
cation of
small trees
for shrubs

Border parts
Shadowed
parts of trees

- -

Shrubs

Lighter
border parts
Possible
misclassifi-
cation of big
shrubs for
trees

General
difficulty to
distinguish
dark shrubs
from
shadows

Border parts
of shrubs
growing
around rocks

Border parts
Possible
misclassifi-
cation of
small shrubs
for dense
grass

Shadows
Border parts
Shadowed
parts of trees

General
difficulty to
distinguish
shadows
from dark
shrubs

 - -

Rocks -

Border parts
of shrubs
growing
around rocks

-

Border parts
Darker rocks
Small rocks
difficult to
spot

Ground -

Border parts
Possible
misclassifi-
cation of
dense grass
for small
shrubs

- Border parts

Misinterpreted pixels in training input corrupted the classification results. Photointerpretation errors of

sample pixels collected randomly for reference raster had further negative impact on accuracy statistics.

Another big issue in a specific trial was that pixels belonging to rocks’ class, due to the small size and

scarcity of this class in study images, were entirely absent in generated sample pixels, which resulted

in 0 pixels classified as rocks in accuracy statistics. Table 2 reveals, that the algorithm had problems

distinguishing trees from bare soil. From Figure 6 is apparent, that the most problematic are border

pixels on the irradiated side, as well as some shadowed parts of the trees, that may resemble darker

areas of the bare soil class. That the classification accuracies depend on whether the area is sunlit or

shaded was demonstrated by Lopatin et al. (2019), who showed that even when shadows were included

during model calibration, the predictions in shaded areas of canopies were generally inaccurate and

lead to misclassification rates between 65% and 100%. The overall accuracy was 47.90% and Kappa

coefficient 0.34. Full Area Based Error Matrix and visualized classification results are displayed in Table

2 and Figure 6.

 25

Table 2 Area Based Error Matrix (Source: QGIS)

 Reference: the estimated area proportion of each class

Classified: the
estimated area
proportion of

each class

Trees
[%]

Shrubs
[%]

Shadows
[%]

Rocks
[%]

Bare soil
[%]

Classification
raster estimated

area [m2]

Total
[%]

Trees [%] 12.23 0.00 0.00 0.00 1.53 5501.62 13.75

Shrubs [%] 0.93 7.46 0.00 0.00 4.66 5222.35 13.06

Shadows [%] 4.75 1.58 11.09 0.00 0.00 6968.71 17.42

Rocks [%] 2.91 4.36 5.81 0.00 5.81 7555.49 18.89

Bare soil [%] 14.49 5.27 0.00 0.00 17.12 14750.63 36.88

Total [%] 35.30 18.67 16.90 0.00 29.13 39998.79

Reference raster
estimated area

[m2]
14121.00 7469.00 6759.00 0.00 11650.00 39998.00

Producer's
accuracy (PA)21

[%]
34.63 39.96 65.61 nan 58.79

User's accuracy
(UA)22 [%]

88.89 57.14 63.64 0.00 46.43

21 The producer’s accuracy for each class is calculated as the ratio of correctly classified samples and
the column total.
22 The user’s accuracy for each class is calculated as the ratio of correctly classified samples and the
row total.

 26

Figure 6 Visualized classification results. Pixel colour codes: Green – Trees, Red – Shrubs, Black – Shadows, Gray
– Rocks, Yellow – Bare soil (Visualized in QGIS)

3.4 Machine learning model

I chose a cloud service Google Colab for training and evaluating the model. The main reason was the

free access to computing resource. The GPUs available in Colab often include Nvidia K80s, T4s, P4s

and P100s23. Colab comes with other advantages too, such as ready to use environment with pre-

installed important packages, easy use with Google Drive, or importing datasets from Kaggle24. The

23 https://research.google.com/colaboratory/faq.html
24 https://www.kaggle.com/

https://research.google.com/colaboratory/faq.html

 27

deep learning methods were implemented using Keras25 (version 2.4.3) with TensorFlow26 backend

(version 2.3.0). Free version of the service comes at a cost of memory limit of 12GB and time limit of

12h. This can become a challenge for some experiments, however this thesis also aims to explore the

set ups with a reasonable tradeoff between working within these limits and still yielding good results.

This increases the usability and practicality for future students with limited access to advanced virtual

machines that would like to build upon or further extend this thesis.

As a basis for the work I used a U-Net model27 created for a Kaggle competition hosted by geoscience

data company TGS28. The model (hereinafter the TGS U-Net) was originally developed to segment

regions containing subsurface salt deposits in seismic images. The training dataset, provided by TGS,

consisted of 4000 seismic grayscale images with dimensions (101 x 101) px and their corresponding

masks. The TGS U-Net architecture, as in the original U-Net, extracts features with convolutional layers

in the encoding part and restores the original size of the image in the decoding part. However, unlike

the original U-Net, TGS U-Net uses the input image with size of (128 x 128 x 3). The size is gradually

reduced, while the depth is increased (from (128 x 128 x 3) to (8 x 8 x 256)), and then the size is

gradually increased, while the depth is decreased (from (8 x 8 x 256) to (128 x 128 x 1)).

The main building block of the TGS U-Net consists of two consecutive 2D convolutional layers with batch

normalization and ReLU activation function. Batch normalization was stated by the author29 to

significantly improve the training. The number of filters starts at 16 and is doubled at every convolution

step. There are four such blocks in the encoder side, each followed by max pooling layer, that halves

the image dimensions, and a dropout layer. The fifth convolutional block forms a bottleneck with the

maximum depth and minimum spatial dimensions (Table 9) after which comes the decoder side, with

four symmetrical deconvolution layers (i.e. transposed convolutions) concatenated with the feature

maps from the encoder side. After comes a dropout layer and the convolutional block, which helps the

model to assemble a more precise output. The number of filters is halved at each step, while the

resolution is doubled. Ultimately, the output of a binary classification is sigmoid, which assigns each

pixel a probability of belonging to the target class. The model is trained with Adam optimizer with a

learning rate of 1e-5. Predictions are compared to labels with binary cross entropy loss function. TGS

U-Net also uses accuracy30 to evaluate the performance. However, this metric has a major disadvantage

– it doesn’t deal well with class imbalance. (For this reason I also included precision and recall and I

picked their harmonic mean, the F1 score, as the main indicator for the classification evaluation, since

it is a more appropriate measure of accuracy for datasets where one class overpowers another.) Keras

callbacks are used to save the weights if the validation loss improves, and early stopping is implemented

if the validation loss doesn’t improve for 10 consecutive epochs to prevent overfitting. Learning rate is

25 https://keras.io/
26 https://www.tensorflow.org
27 https://github.com/hlamba28/UNET-TGS
28 https://www.kaggle.com/c/tgs-salt-identification-challenge
29 https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
30 The overall accuracy = (TP + TN) / (total number of individuals tested)

https://github.com/hlamba28/UNET-TGS
https://www.kaggle.com/c/tgs-salt-identification-challenge
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47

 28

reduced when the validation loss doesn’t improve for five consecutive epochs. For each pixel the

probability of belonging to the target class (salt) is calculated, with the threshold of 0.5.

The dataset is split into training and validation set with ratio 9:1. The validation set is never used in the

training process, it is only used to evaluate the model's performance. There are 50 epochs with batch

size of 32.

The model was trained on P4000 GPU, took less than 20 mins to train and achieved accuracy of 0.92.

It was slightly overfitting, likely due to small number of training images.

The detailed architecture of the TGS U-Net can be seen in Figure 7.

Figure 7 Detailed architecture of the used model. 2@Conv layers – two consecutive Convolution Layers; c1-c9 –

the output tensors of Convolutional Layers; p1-p4 – the output tensors of Max Pooling Layers, u6-u9 – the output

tensors of up-sampling (transposed convolutional) layers (Source: https://towardsdatascience.com/understanding-

semantic-segmentation-with-unet-6be4f42d4b47)

https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47

 29

3.5 Description of datasets

The following subsections describe the development of training data; from the processing of raw images

and labelling procedure to tiling annotated images along with their corresponding binary masks into final

sub-datasets used in the experiments.

3.5.1 The development of the main dataset

This section describes the process of creating and labelling the dataset. Due to input requirements of

the annotation tool used in this thesis, all 21 RGB images in TIFF format had to be first converted into

PNG. After that, images were sliced into smaller square-shaped tiles with dimensions (800 x 800) px,

as depicted in Figure 8, which corresponds to approximately (50 x 50) m patches of land (in case of

sections of image perpendicular to the drone). The tile size was chosen based on the size of the objects

of interest and the amount of context, with the main objective to make visual recognition for labelling

easier. Adjacent tiles have overlap of 39 pixels in horizontal and 136 pixels in vertical direction. The code

can be found at https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net in the file

tif_to_png.py. In total, 630 tiles were generated from the original images (30 tiles per image). Out of

these, only 13 were selected for labelling, due to the time-consuming nature of this process. All 13 tiles

came from the same image. The selected tiles, as well as the complete list of names of the images and

the tiles produced from them can be found in Table A 2 in the Appendix. During the selection, I aimed

for a sample of tiles that would be representative for every part of the original image with different land-

cover configuration and that would contain all 4 classes (shrubs, trees, shadows and rocks) and the

classes would be represented approximately evenly. This, of course, was not achievable in case of

rocks, that were very scarce in the images.

Figure 8 Flowchart of slicing original images into tiles and an illustration of tile overlap

For annotation purposes I chose Labelbox31 – a professional platform for labelling and managing the

training data. There were several reasons for choosing this platform. First of all, tidy interface and an

31 https://labelbox.com/

https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net/blob/main/tif_to_png.py

 30

Overview menu helped to better track my many experimental projects and datasets and to keep them

well organized. Furthermore, easy adding or deleting assets made manipulation with datasets very

flexible. Another reason was the choice of segmentation tools, where in addition to traditional Pen tool

it was possible to use Superpixel tool, which calculates segment clusters of pixels based on their color

and a segment cluster size given by the user. This tool was more efficient in annotating objects with

complex boundaries, such as vegetation. In general, labeling, editing and erasing of the labels was user-

friendly. Another advantage was a built-in function to temporarily manipulate brightness and saturation

levels of images that was a fast and useful way for better understanding and interpreting of the land

cover. It was also possible to control the opacity level of created labels, which was very much

appreciated during re-assessment and validation process with supervisors. Finally, the platform is well-

documented and backed by a professional support. A big handicap of the platform was occasional failure

to save labeled objects. This was especially dangerous because it was only possible to see during

revision. Multiple revisions and corrections of the labeled dataset were necessary.

Land cover classification requires fine-grained understating of an image and its context, meaning that

dense pixel-level annotation like semantic or instance segmentation is needed. While the former labels

each pixel with a corresponding class, the latter also classifies each instance of a class separately. For

the purposes of this thesis semantic segmentation is sufficient. Table 3 shows pixel share of the four

classes in the dataset. As mentioned earlier, I exploited segmentations approximated by superpixels to

facilitate the annotation process, rather than selecting individual pixels. The final product of the process

was a set of 13 hand-crafted dense pixel-level semantic segmentation maps, where each pixel was

assigned a label of a corresponding class (Figure 9). Pixel-based classification maps capture well the

geometry of an image, such as corners and fine elements, but can face issues like noise or an incorrect

characterization of context dependent classes (Stoian et al., 2019)

Table 3 Pixel share of classes in the dataset

Class Shrubs Trees Shadows Rocks

Pixel count 1 746 204 4 042 008 1 213 720 90 313

Pixel share 20.99% 48.58% 14.59% 1.09%

The central issue of labelling that could significantly impact the classification results is faulty labelling.

This could happen in three ways, namely: (1) Incorrect interpretation of vegetation types. Sometimes

problematic distinguishing between the classes made labelling more challenging. Because the flights

were not taken at noon one factor helping to differentiate between trees and shrubs was the size of a

shadow. In general, bigger shadows could be ascribed to trees, smaller to shrubs. This was, however,

not a universal tool because the area contains also young trees that are smaller and thus cast smaller

shadow that can be easily swapped with the shadow of bigger shrub species. (2) Incorrect interpretation

of border regions. As well as the classification plugin described in 3.3 struggled to differentiate between

classes in these regions, the Superpixel tool used for annotating, that was described earlier in this

section, also often struggled to correctly adhere to boundaries of complex vegetation thus manual

selection of pixels was unavoidable. This could lead to assigning an incorrect class to border pixels,

 31

since the visual interpretation was also very difficult. (3) Incoherent class labelling. This concerns mainly

shadows. Because this class also coexists with other classes, e.g. shadows within trees, it was difficult

to keep consistency while labelling and it could be the case that similar groups of pixels were once

labelled as trees and once as shadows. Because pixel‐based species classification at high spatial

resolution is highly affected by within‐canopy variation caused by shadows, Lopatin et al. (2019) decided

to completely exclude shadows and only classify sunlit areas, which improved the general performance.

I decided not to do this, because I found it generally tricky to draw a line between what is a shadow

within trees and what is not anymore, and also because shadows are a part of the canopy structure and

will be present in most of the datasets, therefore I found it reasonable to include them in the training to

achieve more comprehensive and robust model.

Figure 9 An example of a labelled tile and its binary masks. Up-left: original image tile, up-right: labeled image tile
(red - shrubs, orange - trees, yellow - shadows, light yellow - rocks). Bottom (from left): binary mask of shrubs,
trees, shadows and rocks

When the tiles were labelled, I exported the masks in JSON file. Since only JSON or CSV formats were

available for the export, I used a code at https://github.com/aggiungi1procione/Thesis---Shrub-

detection-with-U-Net in the file masks_download_from_JSON.py to filter URIs of individual binary masks

in PNG format from the export file and to download them into separate class folders. The complete

dataset directory structure was then:

https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net/blob/main/masks_download_from_JSON.py

 32

├── test1

│ ├── test1_tiles

│ ├── test1_mask_shrubs

│ ├── test1_mask_trees

│ ├── test1_mask_shadows

│ └── test1_mask_rocks

└──

3.5.2 The development of sub-datasets

This section explains the development of the final training data for experiments and summarizes the

process in Figure 10.

To observe the influence of different amount of captured context, five sub-datasets of different sized

patches were tiled from the main dataset. The same tiling algorithm as in 3.5.1 was used and can be

found at https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net in the file

masks_download_from_JSON.py. The development of the main dataset was used, yielding datasets

with the following features:

A. 832 patches (64 per tile) with dimensions (100 x 100) px. Overlap of 0 px in both dimensions.

These patch dimensions were selected to replicate dimensions of the original data that were

provided for the TGS challenge. This sub-dataset was intended to serve as a baseline for the

other experiments.

B. 208 patches (16 per tile) with dimensions (200 x 200) px. Overlap of 0 px in both dimensions.

C. 117 patches (9 per tile) with dimensions (300 x 300) px. Overlap of 50 px in both dimensions.

D. 52 patches (4 per tile) with dimensions (400 x 400) px. Overlap of 0 px in both dimensions.

E. 52 patches (4 per tile) with dimensions (500 x 500) px. Overlap of 200 px in both dimensions.

No further tiling was done, since the patch overlap was becoming too big, generating highly similar

patches and yielded sub-datasets were too small. Also, the F1 score was expected to converge with the

patch size of approximately half of the original tile, maximum though with the 70% size of the original

tile (Reina et al., 2020). Unlike some approaches that mind the class-cover proportions of the patch

(Buscombe & Ritchie, 2018; Kattenborn et al., 2020; Langford et al., 2019; Watanabe et al., 2018), all

of my patches were used as they were tiled and there was no further selection. Using U-Net, the spatial

information and correlations among classes matter for the learning process. Classes are spatially

unevenly distributed and their frequency varies across patches in my sub-datasets. This stochasticity

can positively contribute to the robustness of the model.

To see the impact of rising the number of samples in the datasets on the learning process, data

augmentation was applied to all sub-datasets, generating three sets per each, with the size of around

800 samples (consistent with the baseline sub-dataset A), 1600 samples (double the baseline sub-

dataset A) and 3800 (imitating the dataset from the TGS challenge, that consisted of 4000 samples). I

https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net/blob/main/masks_download_from_JSON.py

 33

used random rotations (probability=0.5, max left and right rotation of 15°, after which the images were

not rendering correctly anymore), skews (probability = 0.7, magnitude = 0.5), flips through both y and x

axis (probability = 0.9) and also random brightness (probability=0.4, min_factor=0.8, max_factor=1.2)

for the augmentation, because they reproduce effects that could be naturally present in the remote

sensing imagery. To further increase the diversity of the data, I also used small randomized elastic

distortions (probability = 0.5, grid_width = 4, grid_height = 4, magnitude = 5) and shears (probability =

0.4, tilt along y and x axis up to 10°). All the data augmentation was done with an image augmentation

library Augmentor32.

The sub-datasets were subsequently fed to the network using different model input dimensions and thus

rescaling the patches in various scales. This was to investigate whether down-scaling could improve the

performance by better filtering the relevant spatial patterns or it would hamper it by leading to a too big

loss of information. The effect of this strategy on training time was also of interest.

All of the experiments will be further explained in section 4.

Figure 10 Flowchart of the development of the final sub-datasets for experiments

32 Marcus D Bloice, Peter M Roth, Andreas Holzinger, Biomedical image augmentation using Augmentor,
Bioinformatics, https://doi.org/10.1093/bioinformatics/btz259

 34

3.5.3 The development of test sets

Test sets were created in a similar fashion as was described in 3.5.1 and 3.5.2. I picked a (4608 x 3456)

px original TIFF image, converted it to RGB, sliced into smaller square-shaped tiles with dimensions

(800 x 800) px and picked two (or one) for labelling. Labelled tiles were then sliced further according to

the experiment needs.

I created four different test sets:

1. Using one (800 x 800) px tile from the same image from which training tiles were taken (Table

A 2 in the Appendix)

2. Using two (800 x 800) px tiles from other images that were taken during the same flight, as the

previous image (Table A 2 in the Appendix)

3. Using two (800 x 800) px tiles from one image from the new summer set (August 2020)

4. Using two (800 x 800) px tiles from one image from the new winter set (December 2019)

The reasoning of the selection was to see the performance on highly similar data (1 and 2), on

seasonally similar data (3) and on highly distinct data, taken during different phenological stage (4). Two

tiles represent around 15% of the dataset. I picked only one tile for test set 1, because the other

remaining tiles either contained mostly trees or were very difficult to interpret (significant curvatures and

blur in the border image regions). All selected tiles and their location in the original images can be found

in the Appendix Figure A 3, Figure A 4, Figure A 5, Figure A 6 and Figure A 7.

All the datasets can be found at https://www.kaggle.com/biankatn/thesis-shrub-detection-with-unet.

https://www.kaggle.com/biankatn/thesis-shrub-detection-with-unet

 35

4 Experiments

This part describes the methods and experiments performed in order to improve the detection results. I

briefly explain their purpose, set up, procedures and the data used. The main performance measure

was F1 score because of the unbalanced nature of the used dataset.

4.1 The baseline: sub-dataset A

I set a baseline by running the original TGS U-Net model, described in the section 3.4, on my data in a

set of four experiments – one for each of the classes described in Table 4. I adjusted the code so that

the model accepted 3-chanelled RGB input. The code can be found at https://github.com/aggiungi1

procione/Thesis---Shrub-detection-with-U-Net in the file model.ipynb. Sub-dataset A and its augmented

versions (3.5.2 The development of sub-datasets) were used for this purpose. With the train : validation

split 9 : 1, the first (non-augmented) sub-dataset A consisted of 748 training and 84 validation patches.

The two augmented versions were used only with the shrubs class. The summary of all performed

experiments can be found it Table 4. The total number of parameters in the model was 1.18 million.

Table 4 The summary of experiments for the base model with sub-dataset A, (100 x 100) px patches

4.2 Sub-datasets B-E: patch size, scale and data augmentation

This is a set of experiments exploring the impact of the patch size and rescaling of the model input on

the performance. Data augmentation is also being assessed simultaneously. All these experiments are

visually summarized in Figure 10. Because of memory constraints and, most of all, time constraints, not

all of them were feasible to do. For these reasons I omitted rescaling experiments with the biggest sub-

datasets (3808 instances), even though they exhibited the best performance. I also left out rescaling

experiments with the worst performing (the smallest) sub-datasets (808 instances). In the end, I ran 21

experiments in total, with sub-datasets B-E and only with the shrubs class. These experiments are

summarized in Table 5 – Table 8. Table 9 summarizes how the size of input images with different initial

spatial dimensions changes as it travels through U-Net’s pipeline. The total number of parameters was

1.18 million for all experiments.

No. Class
Dataset size

(train-set : val-set)
Patch dimensions

(height x width) [px]
Model input dimensions

(height x width) [px]

1 Shrubs

832 (748:84)

100 x 100 128 x 128

2 Trees

3 Shadows

4 Rocks

5 Shrubs (augmented) 1664 (1497:167)

6 Shrubs (augmented) 3832 (3448:384)

https://github.com/aggiungi1%20procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1%20procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net/blob/main/tif_to_png.py

 36

The assumptions were the following:

1) The patch size:

a) Building on the studies of Kattenborn et al. (2020) and Reina et al. (2020), the accuracy is

expected to improve with increasing patch size, because bigger patch captures more spatial

context. This is illustrated in Figure 11.

2) The model input size:

a) Resizing images to smaller resolutions may lead to a loss of information (W. Zhang et al., 2019).

Reina et al. (2020) indeed achieved a better performance with minimal down-scaling,

b) whereas according to (Müllerová et al., 2017) and (Rakhlin et al., 2018), down-scaling the input

patch can benefit the results by better filtering the relevant spatial patterns. This can, therefore,

depend on the content of the images and what is the target group. My goal was to figure out

which approach would work for my data.

I tested scales 1:1 (patch size close to the original tile size), according to (Reina et al., 2020), and 1:2

according to (Rakhlin et al., 2018). Because the input has to be compatible with the 4 max-pooling layers

contained in the architecture of the TGS U-Net, and therefore must be divisible by 24, the scales were

not always exactly that.

For demonstration purposes, I also ran some of the more time and memory challenging experiments.

Adjustments to the code were necessary because the sub-datasets were too large to fit in memory

provided by the Google Colab. Namely, a custom generator33, loading the dataset from the hard disk

into memory in batches, was implemented. The code can be found at https://github.com/aggiungi1

procione/Thesis---Shrub-detection-with-U-Net in the file model.ipynb. However, the purpose was only to

validate the hypotheses presented in this section and these experiments, regardless of their

performance, were not considered in the further experimenting because of their time-consuming nature,

that made them impractical.

33 https://medium.com/@mrgarg.rajat/training-on-large-datasets-that-dont-fit-in-memory-in-keras-60a9
74785d71

https://github.com/aggiungi1%20procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1%20procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net/blob/main/tif_to_png.py
https://medium.com/@mrgarg.rajat/training-on-large-datasets-that-dont-fit-in-memory-in-keras-60a9

 37

Figure 11 Examples of patches with different sizes (from left: sub-dataset A, sub-dataset B, sub-dataset C, sub-
dataset D, sub-dataset E)

Table 5 The summary of experiments with the sub-dataset B, (200 x 200) px patches

Table 6 The summary of experiments with the sub-dataset C, (300 x 300) px patches

Table 7 The summary of experiments with the sub-dataset D, (400 x 400) px patches

No. Class
Dataset size

(train-set : val-set)
Patch dimensions

(height x width) [px]
Model input dimensions

(height x width) [px]

1 Shrubs (augmented) 808 (727: 81)

 200 x 200

128 x 128

2 Shrubs (augmented) 1658 (1492:166) 128 x 128

3 Shrubs (augmented) 1658 (1492:166) 192 x 192

4 Shrubs (augmented) 3808 (3427:381) 128 x 128

5 Shrubs (augmented) 3808 (3427:381) 192 x 192

No. Class
Dataset size

(train-set : val-set)
Patch dimensions

(height x width) [px]
Model input dimensions

(height x width) [px]

1 Shrubs (augmented) 808 (727: 81)

 300 x 300

128 x 128

2 Shrubs (augmented) 1664 (1497:167) 128 x 128

3 Shrubs (augmented) 1664 (1497:167) 144 x 144

4 Shrubs (augmented) 3808 (3427:381) 128 x 128

5 Shrubs (augmented) 3808 (3427:381) 144 x 144

6 Shrubs (augmented) 3808 (3427:381) 288 x 288

No. Class
Dataset size

(train-set : val-set)
Patch dimensions

(height x width) [px]
Model input dimensions

(height x width) [px]

1 Shrubs (augmented) 808 (727: 81)

 400 x 400

128 x 128

2 Shrubs (augmented) 1658 (1492:166) 128 x 128

3 Shrubs (augmented) 1658 (1492:166) 192 x 192

4 Shrubs (augmented) 1658 (1492:166) 400 x 400

5 Shrubs (augmented) 3808 (3427:381) 128 x 128

 38

Table 8 The summary of experiments with the sub-dataset E, (500 x 500) px patches

Table 9 Summary of changes in size inside U-Net depending on the model input size

Model input size
Size at the bottleneck

(min. spatial size, max. depth)
Model output size

128 x 128 x 3 8 x 8 x 256 128 x 128 x 1

144 x 144 x 3 9 x 9 x 256 144 x 144 x 1

192 x 192 x 3 12 x 12 x 256 192 x 192 x 1

240 x 240 x 3 15 x 15 x 256 240 x 240 x 1

288 x 288 x 3 18 x 18 x 256 288 x 288 x 1

400 x 400 x 3 25 x 25 x 256 400 x 400 x 1

496 x 496 x 3 31 x 31 x 256 496 x 496 x 1

Different models will be from now on denoted with the following name structure: Sub-dataset letter-

dataset size_model input dimensions (further info where it applies) (e.g. A-832_128x128

(dropout=0.05)).

Because I had limited time and computational resources, I picked the model that demonstrated the best

tradeoff between performance and training time for my situation for the following experiments, which

was the case no.3 in Table 6 (C-1664_144x144).

4.3 Balancing the datasets

The purpose of experiments presented in this section is to see the impact of creating training datasets

with different target class representations on the model’s performance. I analyzed the non-augmented

sub-dataset C, that contains 117 patches, for the percentage of shrub pixels and subsequently I filtered

out patches containing less than 1% (P. Zhang et al., 2018) and less than 45% (Wei & Jr, 2013) of shrub

pixels. I then enlarged these sub-dataset C versions to 1664 instances via data augmentation and I

compared the results with the results of an equally sized unfiltered sub-dataset C. The notation of these

models will be C-1664_144x144(1%), C-1664_144x144(45%) and C-1664_144x144 (unfiltered),

respectively.

Although under-sampling may lead to a loss of a critical information1313, the model already seemed to

suffer some degree of overfitting, which could be further worsen with over-sampling, thus the former

was applied for the study. Moreover, no additional data were readily available for the over-sampling

method.

No. Class
Dataset size

(train-set : val-set)
Patch dimensions

(height x width) [px]
Model input dimensions

(height x width) [px]

1 Shrubs (augmented) 808 (727: 81)

 500 x 500

128 x 128

2 Shrubs (augmented) 1652 (1486:166) 128 x 128

3 Shrubs (augmented) 1652 (1486:166) 240 x 240

4 Shrubs (augmented) 1652 (1486:166) 496 x 496

5 Shrubs (augmented) 3808 (3427:381) 128 x 128

 39

4.4 Hyperparameter tuning

Hyperparameter tuning is another way to improve model’s performance before proceeding to testing

phase. This section addresses the impact of different initial number of filters, dropout rate and batch size

on the performance. The search was manual and I used the following values:

1. The initial number of filters: The default number of filters at the beginning of the TGS U-Net was 16.

I also explored if a deeper network with 32 and 64 filters at the beginning can learn better features.

The choice was inspired by P. Zhang et al. (2018). Model C-1664_144x144 was used. Table 10

shows the change in depth of a model based on the initial number of filters.

The total number of parameters in the models was 1.18, 4.71 and 18.82 million, respectively.

Table 10 Summary of changes in size inside U-Net depending on the initial number of filters

No. of
filters

Model input size
Size at the bottleneck

(min. spatial size, max. depth)
Model output size

16 144 x 144 x 3 9 x 9 x 256 144 x 144 x 1

32 144 x 144 x 3 9 x 9 x 512 144 x 144 x 1

64 144 x 144 x 3 9 x 9 x 1024 144 x 144 x 1

2. The dropout rate: The default dropout rate of the TGS U-Net was set to a low value of 0.05 because

this regularization technique was reported by the author29 as not very efficient for the particular TGS

competition. I tested whether higher dropout rates, namely 0.210, 0.510 (F. Zhang et al., 2015) and

0.75 (P. Zhang et al., 2018), can prevent the model from overfitting on my data. In this case, model

C-1664_144x144(45%) described in the previous section 4.3 was used.

3. The batch size: The default batch size of the TGS U-Net was set to 32 that is generally viewed as

an appropriate value (Bengio, 2012; Keskar et al., 2017; Masters & Luschi, 2018). Further, I

experimented with smaller subsets of 15 samples fed to the network at a time and bigger ones, with

the size of 50 samples, limited by the available GPU memory. Here similarly, the model C-

1664_144x144(45%) was used.

I also examined using different optimizer (Nadam) and activation function (ELU, that supposedly learns

representations more robust to noise (Iglovikov et al., 2017)), but the resulting differences were

insignificant and therefore I decided not to include them in this thesis.

4.5 Test data

In this final test phase, all experiments were evaluated on independent tests sets described in 3.5.3.

Since the models were trained on summer data, they were not expected to perform well with highly

dissimilar winter images. For this reason, only some of the best performing models were evaluated on

the test set 4. Table A 8 in the Appendix describes which test sets were used for the individual models.

 40

 41

5 Results

5.1 The baseline: sub-dataset A

1. Shrubs (832 x (100 x 100) px patches)

The results on validation data: accuracy = 0.46, precision = 0.23, recall = 0.96, f1 score = 0.31.

It can be noted, that the TGS U-Net in its original set up performs poorly with the small sub-dataset of

shrubs class. The recall is high, which means that almost all shrubs are classified correctly. However,

this metric alone is not representative, because as it can be seen in Table 11, there are more FPs than

TPs and TNs combined, which means that the model labels too many pixels from other classes as

shrubs. This is why the precision is so low. Figure 12 illustrates the confusion of bare land for shrubs,

but this is the case also with trees and shadows. The first image in the figure is the original patch with

black contours defining shrubs, the second is the binary mask with white polygons corresponding to

ground truth shrubs, following is the heatmap of the probability of shrubs presence, with black contours

to help to better orientate in the prediction and the last image is binary prediction after applying a

threshold of probability bigger than 50%. Contours defining shrubs are present here in red to help to

distinguish it from the black background.

Using predictions in form of continuous maps (heatmaps), instead of discrete classes, can be particularly

useful in case of landscapes with a lot of transitions among vegetation species or types, where pixels

can contain more than one vegetation type, even in VHR imagery (Kattenborn et al., 2020). Because a

lot of shrubs in the area of interest occurs around and even under the trees, the heatmaps in combination

with an expert opinion could be in fact more useful than binary maps in decision making process

regarding the landscape management.

 Table 11 Confusion matrix of predictions on validation data. Shrubs class, 832 patch-dataset

Figure 12 Visual example of the performance on validation data. Shrubs class, 832 patch-dataset. From left: image
patch, binary mask, prediction and binary prediction with threshold 0.5.

 Actual positives Actual negatives

Predicted positives 206 996 707 120

Predicted negatives 8 403 453 737

 42

2. Trees (832 x (100 x 100) px patches)

The results on validation data: accuracy = 0.79, precision = 0.83, recall = 0.83, f1 score = 0.83

In case of tree class, the model performs much better even with the small sub-dataset. Table 12 shows,

that correctly labeled pixels (TPs, TNs) are many more, than the incorrectly labeled ones (FPs, FNs).

The model can detect 83% of all trees (recall) and 83% of all pixels labeled as trees are actually trees

(precision). Figure 13 shows two examples – one of a high recall and precision and the other of a low

precision.

 Table 12 Confusion matrix of predictions on validation data. Trees class, 832 patch-dataset

Figure 13 Two visual examples of the performance (top: better, with high recall and precision; bottom: worse, with
low precision) on validation data. Trees class, 832 patch-dataset. From left: image patch, binary mask, prediction
and binary prediction with threshold 0.5.

3. Shadows (832 x (100 x 100) px patches)

The results on validation data: accuracy = 0.90, precision = 0.77, recall = 0.63, f1 score = 0.69

Similarly like trees, pixels are mostly labeled correctly with respect to the shadows class (Table 13). The

overall quality of detection is worse, than in case of trees. The model struggles to identify 37% of all

shadows. Figure 14 displays a problem to identify shrub pixels in the object’s boundaries.

 Table 13 Confusion matrix of predictions on validation data. Shadows class, 832 patch-dataset

 Actual positives Actual negatives

Predicted positives 623 697 127 504

Predicted negatives 126 486 498 569

 Actual positives Actual negatives

Predicted positives 150 786 45 729

Predicted negatives 87 891 1 091 850

 43

Figure 14 Visual example of the performance on validation data. Shadows class, 832 patch-dataset. From left:
image patch, binary mask, prediction and binary prediction with threshold 0.5.

4. Rocks (832 x (100 x 100) px patches)

The results on validation data: accuracy = 0.99, precision = 0.72, recall = 0.18, f1 score = 0.29

Table 14 perspicuously shows the disproportional representation of rocks class. The accuracy is as high

as 99.5% only because pixels belonging to this class are so few. The recall 18% indicates that the model

clearly fails to detect majority of rocks. From Figure 15 can be concluded, that illumination by sunlight

has an impact on the detection quality.

 Table 14 Confusion matrix of predictions on validation data. Rocks class, 832 patch-dataset

Figure 15 Two visual examples of the performance (top: better, bottom: worse) on validation data. Rocks class, 832
patch-dataset. From left: image patch, binary mask, prediction and binary prediction with threshold 0.5.

 Actual positives Actual negatives

Predicted positives 1 358 540

Predicted negatives 6 001 1 368 357

 44

5. Shrubs – augmented (1664 x (100 x 100) px patches)

The results on validation data: accuracy = 0.84, precision = 0.71, recall = 0.56, f1 score = 0.63

Augmenting the sub-dataset twofold brought significant improvement, increasing the F1 score from 0.31

to 0.63. Precision also more than doubled (from 0.23 to 0.71), so in the results there is now more of the

target pixels, than the ones from different classes. As a consequence, the recall dropped. The model

stopped labeling too many pixels as the target class, which is also reflected in big decrease in FPs –

from 51% to only 5% (Table 11 and Table 15, respectively; for details see Table A 3 in the Appendix).

 Table 15 Confusion matrix of predictions on validation data. Shrubs class, 1664 patch-dataset

6. Shrubs – augmented (3832 x (100 x 100) px patches)

The results on validation data: accuracy = 0.85, precision = 0.73, recall = 0.64, f1 score = 0.68

With further augmentation of the data, slight improvements in precision and F1 score are achieved,

whereas the recall jumps up for almost 10%. A fraction of FNs now moved to TPs (Table 16 and Table

A 3 in the Appendix), more pixels from the target group are now detected. Figure 16 shows the detection

improvement.

 Table 16 Confusion matrix of predictions on validation data. Shrubs class, 3832 patch-dataset

Figure 16 Visual example of the performance on validation data. Shrubs class, 3832 patch-dataset. From left: image
patch, binary mask, prediction and binary prediction with threshold 0.5.

 Actual positives Actual negatives

Predicted positives 347 615 139 200

Predicted negatives 275 509 1 973 804

 Actual positives Actual negatives

Predicted positives 930 008 349 334

Predicted negatives 513 684 4 498 430

 45

5.2 Sub-datasets B-E: patch size, scale and data augmentation

5.2.1 Summary

Table 17 is a summary of results of all performed experiments. Two best results per sub-dataset are

always in bold. For all but sub-dataset B the higher value is the result of the time-consuming experiments

that took 46-60 hours to train.

Table 17 The summary table of results of all performed experiments

Figure 17 is a qualitative comparison of the results of the three most time demanding experiments and

the model C-1664_144x144. It is apparent, that many additional training hours do not bring a lot of

benefit in this regard.

Sub-dataset
name

Patch dimensions
(height x width) [px]

Sub-dataset size
Model input dimensions

(height x width) [px]
F1

score

Sub-dataset B 200 x 200

808 128 x 128 0.61

1658
128 x 128 0.76

192 x 192 0.75

3808
128 x 128 0.83

192 x 192 0.82

Sub-dataset C 300 x 300

808 128 x 128 0.55

1664
128 x 128 0.80

144 x 144 0.82

3808

128 x 128 0.83

144 x 144 0.86

288 x 288 0.90

Sub-dataset D 400 x 400

808 128 x 128 0.78

1658

128 x 128 0.79

192 x 192 0.85

400 x 400 0.90

3808 128 x 128 0.84

Sub-dataset E 500 x 500

808 128 x 128 0.00

1658

128 x 128 0.80

240 x 240 0.87

496 x 496 0.90

3808 128 x 128 0.82

 46

Figure 17 Qualitative comparison of the performance of the models with the longest training time and the best
tradeoff model regarding time and performance, C-1664_144x144.

5.2.2 Impact of data augmentation and patch size

Figure 18 presents the impact of data augmentation within each sub-dataset on F1 score. The blue

series symbolize 808-instance datasets, the green 1658-instance datasets and the red 3808-instance

C-1664_144x144; F1 = 0.82: ~4h

D-1658_400x400; F1 = 0.90 ~46h

E-1658_496x496; F1 = 0.90 ~60h

C-3808_288x288; F1 = 0.90 ~50h

 47

datasets. Clearly, the F1 score improves with growing dataset size. This trend is especially strong with

sub-dataset B. For the sub-datasets with bigger patch sizes the difference is not that big, especially

between the bigger datasets (1658 and 3808) – the performance seems to be converging. Sub-dataset

D has the flattest trendline.

The impact of patch size among sub-datasets can be also observed. Here, the sub-dataset D

experiences the best performance with the smallest 808-instance dataset size, whilst the patch size

doesn’t seem to provoke much of a difference among 3808-instance sized datasets and the F1 values

oscillate around 0.83 for all sub-datasets. Despite running the model on sub-dataset E with 808

instances multiple times it always failed to detect any shrubs. Neural networks don’t assure to reach a

global optima, so probably the learning converged into some bad local minima, but at the moment I can’t

offer a proper explanation for this phenomenon. This model is treated as an outlier with regards to

discussion. All models’ input dimensions are (128 x 128) px.

However, applying random data augmentation techniques yields different data every time, influencing

class distribution in the dataset (Figure 19). This may impact the results as well. Model (C-

1664_144x144) with newly generated data, using slightly different set of augmentation techniques,

performed a bit worse than its predecessor (0.05 drop in accuracy 0.04 in recall).

Figure 18 Impact of data augmenting and a patch size on F1 score. Model input: (128 x 128) px

0.61
0.55

0.78

0.00

0.76
0.80 0.79 0.80

0.83 0.83 0.84 0.82

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sub-dataset B
(200 x 200)px

Sub-dataset C
(300 x 300)px

Sub-dataset D
(400 x 400)px

Sub-dataset E
(500 x 500)px

F
1
 S

c
o
re

 [
-]

Sub-dataset
(Patch size)

Impact of data augmenting and a patch size on F1
score. Model input: (128 x 128)px

808 1658 3808

 48

Figure 19 Impact of data augmentation on class distribution in the dataset: two runs of random augmentations of
sub-dataset C (1664 patches) with the same techniques

5.2.3 Impact of down-scaling

Figure 20 takes a closer look at the impact of down-scaling of patches on the performance. The red

series are the base patch size ((128 x 128) px), which therefore represents different scaling ratios for

different patch sizes (from 42.67% to 25.6% of the original patch size). The yellow series represent

approximately 50% of the original patch size and the green ones roughly 100%, which means basically

no down-scaling. While the impact is indistinct in case of sub-dataset B, for the bigger patch sized

datasets it is definitely better to minimize down-scaling, since it has negative impact on F1 score.

However, for the sake of a tradeoff between the performance and time, the scale 1:2 seems to be

generally the most viable option, similarly as for Rakhlin et al. (2018). The best results plateau on 0.90,

which is an important information to consider, since each of these three experiments has a different

training time (50h for sub-dataset C, 46h for sub-dataset D and 60h for sub-dataset E). On average,

3808-instance sub-dataset C is the best performing one regarding F1 score.

 49

Figure 20 Impact of down-scaling on F1 score

5.2.4 Detailed results on validation set

Sub-dataset B: (200 x 200) px patches

1. 808 patches; model input dimensions: (128 x 128) px

The results on validation data: accuracy = 0.83, precision = 0.80, recall = 0.49, f1 score = 0.61.

Comparing to the sub-dataset A, twice as big patch size helped to achieve similar F1 score with almost

five times smaller dataset. 80% of the pixels marked as shrubs actually belong to this class, however

only half of them gets detected. Figure 21 is a perfect example of a borderline case, where it is not clear

whether the model struggles to classify shrubs on extremely deformed images or the labels are just

incorrect.

0.80
0.83

0.78 0.80
0.76

0.83 0.82
0.86 0.85 0.87

0.75

0.82

0.90 0.90 0.90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sub-dataset B:
1658

(200 x 200)px

Sub-dataset B:
3808

(200 x 200)px

Sub-dataset C:
1658

(300 x 300)px

Sub-dataset C:
3808

(300 x 300)px

Sub-dataset D:
1658

(400 x 400)px

Sub-dataset E:
1658

(500 x 500)px

F
1
 S

c
o
re

 [
-]

Sub-dataset & its size
Patch dimensions

Impact of down-scaling on F1 score

base (25% - 42%) ~50% ~100%

 50

Figure 21 Visual example of the performance on deformed validation data. Shrubs, 808 x (200 x 200) px patch-
dataset, model input: (128 x 128) px. From left: image patch, binary mask, prediction and binary prediction with

threshold 0.5.

2. 1658 patches; model input dimensions: (128 x 128) px

The results on validation data: accuracy = 0.87, precision = 0.90, recall = 0.65, f1 score = 0.76.

Augmenting the sub-dataset to twice the size leads to great improvements – 10%, 16% and 15% higher

precision, recall and F1 score, respectively. Figure 22 shows the improvement in performance in

comparison to the best result with sub-dataset A (Figure 16).

Figure 22 Visual example of the performance on validation data. Shrubs, 1658 x (200 x 200) px patch-dataset,
model input: (128 x 128) px. From left: image patch, binary mask, prediction and binary prediction with threshold
0.5.

3. 1658 patches; model input dimensions: (192 x 192) px

The results on validation data: accuracy = 0.87, precision = 0.86, recall = 0.67, f1 score = 0.75.

Almost no downscaling of the patches (96% of the original patch size) basically didn’t impact the results.

What it did impact, though, was the training time, that grew from about 4.5 hours to 9.5.

Figure 23 poses the same question as Figure 21 – does the model struggle to work with augmented

data, or it actually performs well and what is incorrect are the labels?

 51

Figure 23 Visual example of the performance on deformed validation data. Shrubs, 1658 x (200 x 200) px patch-
dataset, model input: (192 x 192) px. From left: image patch, binary mask, prediction and binary prediction with
threshold 0.5.

4. 3808 patches; model input dimensions: (128 x 128) px

The results on validation data: accuracy = 0.90, precision = 0.94, recall = 0.75, f1 score = 0.83.

Certainly, additional augmentation improves the performance, F1 grows for 8%. On a patch of land of

approximately (12 x 12) m (Figure 24), for the purposes of landscape planning and grazing

management, this particular result could be viewed as satisfactory.

Figure 24 Visual example of the performance on validation data. Shrubs, 3808 x (200 x 200) px patch-dataset,
model input: (128 x 128) px. From left: image patch, binary mask, prediction and binary prediction with threshold
0.5.

5. 3808 patches; model input dimensions: (192 x 192) px

The results on validation data: accuracy = 0.91, precision = 0.90, recall = 0.76, f1 score = 0.82.

The experience with minor downscaling was the same also in this case, it had basically no effect on the

results. The improvement of 1-2% is not worth the disproportionate increase in training time.

However, analyzing confusion matrices of all these experiments (Table A 4 in the Appendix), one can

see gradual decrease in FNs (from 11.87% with 808 patches and model input (128 x 128) px to 5.86%

with 3808 patches and model input (192 x 192) px), so the presented techniques are slightly helping the

model to better detect shrubs.

 52

Sub-dataset C: (300 x 300) px patches

1. 808 patches; model input dimensions: (128 x 128) px

The results on validation data: accuracy = 0.66, precision = 0.48, recall = 0.64, f1 score = 0.55.

Increasing the size of the patch for another 100 pixels in both dimensions yielded many times in a row

worse results than with (200 x 200) px patches, the F1 score dropped from 0.61 to 0.55, although the

biggest drop was recorded for the precision (from 0.80 to 0.48). The model started to label too many

pixels from other classes as shrubs.

2. 1664 patches; model input dimensions: (128 x 128) px

The results on validation data: accuracy = 0.84, precision = 0.96, recall = 0.68, f1 score = 0.80.

Bigger patch size brought expected outcome – the performance improved in comparison to same sub-

dataset size of (200 x 200) px patches. From Table 18 may be seen that FPs are below 1% (0.92%),

which didn’t happen in the previous experiments. That also explains the very high precision.

 Table 18 Confusion matrix of predictions on validation data. Shrubs, 1664 x (300 x 300) px patch-dataset, model
input: (128 x 128) px

3. 1664 patches; model input dimensions: (144 x 144) px

The results on validation data: accuracy = 0.88, precision = 0.96, recall = 0.72, f1 score = 0.82.

Rescaling to 48% of the original patch brings only minimal improvements. In this case, it is more

understandable than previously, since the rescaling from (128 x 128) px only changed for about 5% of

the original patch size, unlike in case of (200 x 200) px patches (64% of the original patch size with (128

x 128) px and 96% with (196 x 196 px)). The model’s capacity to correctly interpret even complex shapes

is undeniably improving (Figure 25).

Figure 25 Visual example of the performance validation data. Shrubs, 1664 x (300 x 300) px patch-dataset, model
input: (144 x 144) px. From left: image patch, binary mask, prediction and binary prediction with threshold 0.5.

 Actual positives Actual negatives

Predicted positives 554 954 25 096

Predicted negatives 258 583 1 897 495

 53

4. 3808 patches; model input dimensions: (128 x 128) px

The results on validation data: accuracy = 0.85, precision = 0.97, recall = 0.73, f1 score = 0.83.

Further extension of the sub-dataset brings marginal improvements. The model takes almost 9 hours to

train. In Figure 26 another illustration of a great performance with even complex shapes.

Figure 26 Visual example of the performance on validation data. Shrubs, 3808 x (300 x 300) px patch-dataset,
model input: (128 x 128) px. From left: image patch, binary mask, prediction and binary prediction with threshold
0.5.

5. 3808 patches; model input dimensions: (144 x 144) px

The results on validation data: accuracy = 0.88, precision = 0.96, recall = 0.77, f1 score = 0.86.

In this case as well, the same small difference in rescaling ratios brings only small improvements.

However, this is the best performance achieved so far. The training takes only about 30 minutes more

than in the previous experiment. The confusion matrix with a notably high rates of correctly classified

pixels can be seen in Table 19. The qualitative evaluation is illustrated in Figure 27.

Table 19 Confusion matrix of predictions on validation data. Shrubs, 3808 x (300 x 300) px patch-dataset, model
input: (144 x 144) px

Figure 27 Visual example of the performance on validation data. Shrubs, 3808 x (300 x 300) px patch-dataset,
model input: (144 x 144) px. From left: image patch, binary mask, prediction and binary prediction with threshold
0.5.

 Actual positives Actual negatives

Predicted positives 1 607 796 62 251

Predicted negatives 474 914 5 755 455

 54

6. 3808 patches; model input dimensions: (288 x 288) px

The results on validation data: accuracy = 0.94, precision = 0.90, recall = 0.90, f1 score = 0.90.

The trend of increasing performance with the increasing scale continues with the scale of 96%. However,

even though F1 score raised for 4%, the training took around 50 hours. This is enormous time-

consumption, especially considering that visually it is hard to tell the difference from the previous two

experiments that take four times less to train.

Generally, the percentage of FPs was very low in these experiments, usually below 1%, with an

exception of the smallest 808-instance dataset (Table A 5 in the Appendix). The model is now pretty

good at distinguishing between shrubs and other classes.

Sub-dataset D: (400 x 400) px patches

1. 808 patches; model input dimensions: (128 x 128) px

The results on validation data: accuracy = 0.79, precision = 0.97, recall = 0.65, f1 score = 0.78.

With the patch size (400 x 400) px, this experiment significantly outperformed all of the previous ones

in this category of small 808-instance datasets. Exceptionally high precision indicates that the model

thinks there are more shrubs than there actually are.

2. 1658 patches; model input dimensions: (128 x 128) px

The results on validation data: accuracy = 0.81, precision = 0.98, recall = 0.67, f1 score = 0.79.

Improvement of 1-2% takes 5 hours – approximately double the time of the 808-patch dataset.

3. 1658 patches; model input dimensions: (192 x 192) px

The results on validation data: accuracy = 0.87, precision = 0.97, recall = 0.75, f1 score = 0.85.

Despite the model takes 9 hours to train, rescaling the patches to 48% instead of 32% brings noteworthy

improvement of 6% in F1 score. Only around 7% of all pixels are FNs and 0.6% are FPs (Table 20 and

Table A 6 in the Appendix). Considering the tradeoff between time and performance, this is the second

best model, after the 3808-patch sub-dataset C with model input dimensions (144 x 144) px. The

illustration of the performance is in Figure 28.

 Table 20 Confusion matrix of predictions on validation data. Shrubs, 1658 x (400 x 400) px patch-dataset, model
input: (192 x 192) px

 Actual positives Actual negatives

Predicted positives 1 311 234 37 863

Predicted negatives 433 427 4 336 900

 55

Figure 28 Two visual examples of the performance on validation data. Shrubs, 1658 x (400 x 400) px patch-dataset,
model input: (192 x 192) px. From left: image patch, binary mask, prediction and binary prediction with threshold
0.5.

4. 1658 patches; model input dimensions: (400 x 400) px

The results on validation data: accuracy = 0.96, precision = 0.92, recall = 0.89, f1 score = 0.90.

Another significant improvement of 5% in F1 score is achieved by using the 1:1 rescaling ratio.

Considering only the performance this is the second best result, after the 3808-patch sub-dataset C with

model input dimensions close to the original patch, (288 x 288) px. This performance, however, also

comes at a price of 46-hour long training.

5. 3808 patches; model input dimensions: (128 x 128) px

The results on validation data: accuracy = 0.84, precision = 0.99, recall = 0.73, f1 score = 0.84.

Six percent drop in F1 score comes with a relief of only 10.5 hours needed for the training. However,

model seems to perform better and takes less time to train under conditions described in point 3 (i.e.

1658-instance dataset with (192 x 192) px model input size).

Sub-dataset E: (500 x 500) px patches

1. 808 patches; model input dimensions: (128 x 128) px

The results on validation data: accuracy = 0.64, precision = 1.00, recall = 0.00, f1 score = 0.00.

 56

The model under these conditions repeatedly performed very bad. It was incapable to learn any relevant

information about the class, labeling essentially all pixels in the validation set as non-shrubs (Table 21).

It took two hours for the model to learn to predict outputs such as Figure 29.

 Table 21 Confusion matrix of predictions on validation data. Shrubs, 808 x (500 x 500) px patch-dataset, model
input: (128 x 128) px

Figure 29 Two visual examples of the performance (top: better, bottom: worse) on validation data. Shrubs, 808 x
(500 x 500) px patch-dataset, model input: (128 x 128) px. From left: image patch, binary mask, prediction and
binary prediction with threshold 0.5.

2. 1652 patches; model input dimensions: (128 x 128) px

The results on validation data: accuracy = 0.79, precision = 0.98, recall = 0.68, f1 score = 0.80.

Doubling up the number of instances brought a dramatic turn – a sudden raise in F1 score from zero to

0.8 in only 4.5 hours. The model can detect 68% of the shrub pixels and only 2% of the detected pixels

are from another class. Figure 30 brings two visual examples.

 Actual positives Actual negatives

Predicted positives 285 0

Predicted negatives 472 896 853 923

 57

Figure 30 Two visual examples of the performance on validation data. Shrubs, 1652 x (500 x 500) px patch-dataset,
model input: (128 x 128) px. From left: image patch, binary mask, prediction and binary prediction with threshold
0.5.

3. 1652 patches; model input dimensions: (240 x 240) px

The results on validation data: accuracy = 0.89, precision = 0.98, recall = 0.78, f1 score = 0.87.

Down-scaling the patch to only 48% of the original (500 x 500) px one brings about 7% improvement in

F1 score. The precision remains at 98%, whereas the recall raises up for 10%. The training lasted 15.8

hours.

4. 1652 patches; model input dimensions: (496 x 496) px

The results on validation data: accuracy = 0.95, precision = 0.96, recall = 0.86, f1 score = 0.90.

In this case, almost no down-scaling was applied. The F1 score is 0.90, the highest score achieved in

these experiments. Recall improved for additional 8%, generating the all-low number of FNs – only

3.56% (Table A 7 in the Appendix). This is the third time that an F1 score of 0.90 was achieved, however,

at a cost of 60 hours of training.

5. 3808 patches; model input dimensions: (128 x 128) px

The results on validation data: accuracy = 0.79, precision = 0.99, recall = 0.70, f1 score = 0.82.

Getting back to down-scaling the patch to 25.6% of the original one, the F1 score is only 2% higher than

in case 2. (0.8) but takes around 10.5 hours to train – more than double the time of case 2.

 Table 22 Confusion matrix of predictions on validation data. Shrubs, 3808 x (500 x 500) px patch-dataset, model
input: (128 x 128) px

 Actual positives Actual negatives

Predicted positives 1 454 548 7 387

Predicted negatives 622 363 4 158 006

 58

Figure 31 Two visual examples of the performance (top: better, bottom: worse) on validation data. Shrubs, 3808 x
(500 x 500) px patch-dataset, model input: (128 x 128) px. From left: image patch, binary mask, prediction and

binary prediction with threshold 0.5.

5.2.5 Performance fluctuation

All the above-described experiments were run just once, with four exceptions: models B-1658_128x128,

C-1664_144x144 and C-1664_144x144(newly augmented) with newly augmented data using the same

augmentation techniques, and C-3808_288x288. These models underwent several runs to see how

much did results differ among runs. All parameters were therefore held constant for each individual

model during all the runs. I chose model C-1664_144x144 as the one I used in the majority of the

experiments and I used it with two separate datasets that were augmented with the same techniques

but were not identical, then I chose C-3808_288x288 as the well performing one and B-1658_128x128

as another model with acceptable results within a relatively short training time. Averages, absolute

uncertainties and ranges34 of the metrics evaluated on validation data can be seen in Table 23. These

results are, of course, insufficient for any statistical purposes. Many more runs would be needed to

obtain robust distribution of the output fluctuations, but this was not feasible because of computational

and time constraints. The average range of all the results is 0.04, 0.03 after excluding the major outliers

in model B-1658_128x128 – recall and subsequently F1 score, and 0.02 after excluding the entire model

B-1658_128x128. Since there was only one run out of overall 13 with such a difference in recall (and

F1), I considered the 0.02 range as the most representative one. Ranges in the Table 23 do not always

equal double the value of the corresponding absolute uncertainty as a result of rounding.

34 Range was calculated as the difference between maximum and minimum measured value. It is double
the value of an absolute uncertainty.

 59

Table 23 Averages, absolute uncertainties and ranges of metrics evaluated on validation data of four different
models

No. 1 2 3 4

Model B-1658_128x128 C-1664_144x144
C-1664_144x144

(newly augmented)
C-3808_288x288

No. of runs 4 3 3 3

Total time [h] ~17 ~13 ~13 ~150

Accuracyavg
± ∆ Accuracy

0.85 ± 0.03 0.88 ± 0.01 0.83 ± 0.00 0.92 ± 0.02

Accuracy range 0.05 0.01 0 0.04

Precisionavg
± ∆ Precision

0.90 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.89 ± 0.01

Precision range 0.01 0.03 0.01 0.02

Recallavg
± ∆ Recall

0.59 ± 0.09 0.72 ± 0.02 0.68 ± 0.01 0.89 ± 0.04

Recall range 0.19 0.04 0.02 0.04

F1avg ± ∆ F1 0.71 ± 0.08 0.82 ± 0.02 0.79 ± 0.00 0.89 ± 0.02

F1 range 0.17 0.04 0.01 0.03

5.3 Balancing the datasets

The main metrics evaluating the performance of each experiment can be found in Table 24. With raising

representation of shrub pixels in the dataset dropping accuracy, precision and F1 score can be noticed.

From an overview of shrub distribution in the different versions of the sub-dataset C (Figure A 8 in the

Appendix) can be seen that there is about 18% of patches with less than 1% of shrub cover in the non-

filtered (non-augmented) sub-dataset C, while around 87% patches contain less than 45% of shrub

cover. This disproportion could be the reason of a different magnitude of the drop in accuracy, precision

and F1 score between experiments 1 and 2, and 2 and 3. From Figure A 8 (6) in the Appendix can be

also seen that shrubs are slightly over-represented in the 3rd experiment, which leads to a raise in recall.

Figure 32 and Figure 33 show the qualitative difference in classification between model C-

1664_144x144(1%) and C-1664_144x144(45%) on the same patch.

Table 24 Summary of results using datasets with different extent of shrub representation

No. Model Shrubs in the dataset [%] Accuracy Precision Recall F1 score

1 C-1664_144x144(unfilt.) 24 0.88 0.96 0.72 0.82

2 C-1664_144x144(1%) 29 0.86 0.86 0.77 0.81

3 C-1664_144x144(45%) 60 0.74 0.73 0.78 0.76

 60

Figure 32 Illustration of the classification results of model C-1664_144x144(1%)

Figure 33 Illustration of the classification results of model C-1664_144x144(45%)

Figure A 8 (3) & (6) in the Appendix is a perfect example of the randomness of the re-distribution of class

representation when data augmentation is applied. Therefore, implementing this technique can be a

contributor of a more difficult reproducibility of the experiment.

5.4 Hyperparameter tuning

The impact of increasing depth of the network on the performance is summarized in Table 25. There is

not much of a difference in the accuracies and precisions, however the drop in recall, leading to drop in

F1 score, is apparent for the deepest network with 64 initial filters. The network gets worse in noticing

shrubs. Moreover, it takes around 30 hours to train, while the first two models only take around 5 and

10 hours, respectively. Considering the little difference in performance between the model no. 1 and 2,

the former one – the model in original setting using only 16 filters, looks like the best compromise

between time and performance.

Table 25 The summary of the impact of increasing network’s depth on the performance

Increasing the dropout rate obviously spoils the performance (Table 26). The only exception is recall

that raises to 1 with the highest dropout rate. This could be misleading though, since the model could

be simply labeling most of the pixels as shrubs. The best performance is achieved with the smallest

No. Number of filters Accuracy Precision Recall F1 score

1 16 (original setting) 0.88 0.96 0.72 0.82

2 32 0.89 0.97 0.75 0.84

3 64 0.87 0.97 0.62 0.76

 61

dropout rate, that was a part of the original setting. There is less deterioration in metrics between dropout

rates 0.05 and 0.2 but begins to be more apparent with bigger dropout rates. The change is especially

pronounced between dropouts 0.2 and 0.5, where the decline especially in accuracy, but also in

precision and F1 score, is significant (0.3, 0.12 and 0.08, respectively).

Table 26 The summary of the impact of different dropout rate on the performance

Finally, as Table 27 shows, the average performance doesn’t change much within this small range of

batch sizes. There is only about maximum of 30 minutes difference in training time between consecutive

models.

Table 27 The summary of the impact of different batch size on the performance

5.5 Test data

The test phase showed generally worse performance of the models on the test data. The F1 score is

usually the highest with the test set 2, but an absolute highest F1 score of 0.77 was achieved by model

C-3808_288x288 with the test set 1. The second highest F1 score (0.76) was achieved by models C-

3808_288x288, C-1664_144x144(45%), C-1664_144x144(BS=15) and E-1658_240x240 using test set

2. The highest F1 score averaged over test sets 1, 2 and 3 was thus achieved by model C-

3808_288x288, reaching 0.72. Figure 34 – Figure 36 show the performance of this model on test sets

1-3 and Figure 37 illustrates its performance on test set 4. The average F1 score achieved by each

model on all 3 test sets (excluding test set 4) followed the trend from Figure 18, where it was raising for

the models using increasingly big patch sizes, peaked with the models using (300 x 300) px patch and

plateaued for the rest of the models. A trend of improved F1 score with the raising dataset size as well

as raising model input size could be also observed, with exception of models E-. The winter images

performed badly, as it was expected. Therefore, values on test set 4, if the evaluation was performed at

all, were generally treated as outliers and were not considered in the analysis.

No. Dropout rate Accuracy Precision Recall F1 score

1 0.05 (original setting) 0.74 0.73 0.78 0.76

2 0.2 0.71 0.73 0.75 0.74

3 0.5 0.41 0.61 0.71 0.66

4 0.75 0.41 0.60 1.00 0.75

No. Batch size Accuracy Precision Recall F1 score

1 15 0.73 0.76 0.78 0.77

2 32 (original setting) 0.74 0.73 0.78 0.76

3 50 0.72 0.76 0.78 0.77

 62

Figure 34 Visual example of the performance of C-3808_288x288 model on test set 1. From left: image patch,
binary mask, prediction and binary prediction with threshold 0.5. Accuracy = 0.89, Precision = 0.84, Recall = 0.72,
F1 score = 0.77.

Figure 35 Visual example of the performance of C-3808_288x288 model on test set 2. From left: image patch,
binary mask, prediction and binary prediction with threshold 0.5. Accuracy = 0.74, Precision = 0.76, Recall = 0.76,

F1 score = 0.76.

 63

Figure 36 Visual example of the performance of C-3808_288x288 model on test set 3. From left: image patch,
binary mask, prediction and binary prediction with threshold 0.5. Accuracy = 0.67, Precision = 0.56, Recall = 0.71,
F1 score = 0.62.

Figure 37 Visual example of the performance of C-3808_288x288 model on test set 4. From left: image patch,
binary mask, prediction and binary prediction with threshold 0.5. Accuracy = 0.63, Precision = 0.12, Recall = 0.00,

F1 score = 0.00.

For Balancing the datasets, the highest average F1 score (0.71) was achieved by C-

1664_144x144(45%) and this was also the model with the smallest difference between the validation

(0.78) and test F1 score. The highest performance was generally achieved with test set 2 and the second

highest with test set 1. The best F1 score achieved on test set 3 was 0.68 with the model C-

1664_144x144(45%).

Regarding the Hyperparameter tuning, raising the number of filters brought exactly opposite results as

the validation. Model C-1664_144x144(filters=32) performed worst on all three test sets (average F1

score = 0.60), while C-1664_144x144(filters=64) showed the highest average F1 score 0.70 for all test

sets (more specifically 0.64, 0.73 and 0.72, respectively for test sets 1, 2 and 3). C-

1664_144x144(filters=16) performed similarly with test sets 1 and 2 (0.66 and 0.74, respectively) and

 64

only got worse with test set 3 (0.62). Test set 2 had the highest average F1 score (0.71), while test sets

1 and 3 performed similarly on average (0.62 and 0.63, respectively). In case of a dropout rate, the

testing followed the validation evaluation trend and models using higher dropouts were gradually

performing worse on all test sets. Best average F1 score was once again achieved by test set 2 (0.73),

while the second best by test set 3 (0.61). Finally, smaller batch sizes 15 and 32 showed better average

F1 scores (0.70 and 0.71, respectively, as opposed to 0.64 for batch size 50). Test set 2 with the highest

average F1 score (0.74) was followed by test set 1 and 3 (0.66 and 0.65, respectively).

The complete summary of the results can be found in Table A 8 Table A 5in the Appendix.

 65

6 Discussion

In this section I analyze the results of individual experiments.

6.1 The baseline: sub-dataset A

From the results in 5.1it is clear that the overall performance improves with the raising volume of

augmented data, with the highest F1 score (0.68) when training with the biggest sub-dataset (3832

patches). This is not a surprise – the model has more examples to learn from and the data augmentation

aids in encoding more invariance, making the learning more robust. The performance seems to be

converging, but there is still a potential for further improvement by data extension through augmentation.

A thing to notice here is a different percentage representation of the shrubs class in each validation

dataset – 15.65%, 22.77% and 22.95% (from Table 11, Table 15 and Table 16, respectively; more detail

can be found in Table A 3 in the Appendix). This is caused by splitting of the dataset into train and

validation sets, as well as applying random data augmentation techniques, which may lead to different

class distribution. Even though the differences are not big, similar stochastic situation can be expected

in the training set, where it can directly influence results. More controlled way of generating new data

and subsequent splitting them into train and validation sets could eventuate into more reproducible

results.

Another important thing that resurfaced was significantly better performance of the tree class, that

outperformed shrubs even with the non-augmented dataset (832 patches). Similar results were

achieved using the classification tool in QGIS (3.3). This can be ascribed to the fact, that trees are a

much more balanced class without any artificial adjustments to the data, with 48.58% pixel

representation across the dataset, while shrubs only account for 20.99%, but the most valid reason

seems to be the fact, that trees are simply more distinct to other classes and suffer less from high intra-

and low inter-class variance.

However, even the most augmented sub-dataset A performs poorly in comparison to other sub-datasets.

This might be caused by the fact, that the patches are too small for the model to recognize any overall

pattern. There are assumably too many patches consisting of only a part of one object and not capturing

enough of the background context, preventing the model from learning sufficient amount of the inter-

class correlations and leading to worse performance. Moreover, contrary to the other sub-datasets the

patches here are up-scaled (from 100 to 128 px), which can bring more blur into them, making it even

more difficult to see relevant patterns. On the top of that, scales larger than one don’t incur much

performance improvement because there is no additional information gained, and instead they occupy

more space in GPU (Zheng et al., 2016).

 66

Accuracy is only slightly worse comparing to the accuracy achieved by the model in the TGS competition

(0.85 and 0.92, respectively). This can be caused by the fact that the shapes in the original dataset are

simpler, therefore this approach may not be the right one for vegetation classes.

Generally speaking, the performance, especially so for the shrubs class, is not extraordinary. Small

patch sizes probably fail to capture enough of spatial detail and fine-grained boundaries between the

class and the background.

6.2 Sub-datasets B-E: patch size, scale and data augmentation

The results presented in section 5.2 evidently support data augmentation as a means of improving the

performance. I compared F1 scores of models trained on 808-, 1658- and 3808-instance datasets in

Figure 18. The biggest differences among models trained on the same sub-dataset were between 808-

and 1658-instance datasets for the smaller patch-sized sub-datasets B and C. This is likely caused by

insufficient amount of information provided by only 808 instances in a dataset, whereas doubling this

amount to 1658 seems to be already satisfactory. On the other hand, expanding the datasets further to

3808 does not anymore yield such big differences and the F1 score begins to plateau. The

improvements are a couple of percent, while the training time generally doubles. This is normal, for

example Hussain et al. (2019) gained only 4% improvement in accuracy with increasing the size of the

dataset tenfold. Obviously, this also affects time greatly, a variable that had a big importance in this

study. Thereby I didn’t proceed with experiments when the improvements in performance started to be

too disproportionate to the time increments. Hence, this means that the presented results are not

necessarily the best achievable ones and I would recommend further testing in this direction. For the

augmentation, I used a high number of deformation types with generally high probability and magnitude,

much higher than in case of e.g. Kattenborn et al. (2020), which could have corrupted the performance.

Random data augmentation could be treated as another hyperparameter, since changing the

deformation types (Reina et al., 2020) or their argument values could yield different classification results.

Excluding deformation technique all together could potentially yield better results, since according to

Sauder (2014) CNNs are not robust to deformations. An augmentation technique that I didn’t use and

could reduce the misclassification problem is a multi-scale augmentation (Li et al., 2018; P. Zhang et al.,

2018). Training the model on a data at multiple scales can be useful for the classification of land cover

with high spatial heterogeneity (P. Zhang et al., 2018) and could be worth of experimenting with. Another

interesting thing to notice is that the representation of shrubs can vary for even 14% among datasets

(e.g. D-808_128x128 and D-1658_400x400, details in Table A 6 Table A 5in the Appendix. Impacts of

this were not further explored but it could be another topic for a future investigation.

Patch size seems to have no significant impact on the performance of models using the biggest 3808-

instance dataset, all the values oscillate around 0.83. The situation is similar for models using (300 x

300) px patches and bigger training on 1658-instance sub-datasets, that also have equal F1 score

(0.80). This indicates that increasing the patch size is not justified anymore once the amount of samples

in the training dataset is sufficient, and increasing it beyond (300 x 300) px also doesn’t improve the

 67

classification results, similarly as in case of Hung et al. (2014), instead it increases time and

computational requirements. This same trend can be observed also in Figure 20. From Figure 18 can

be also noticed that model D-3808_128x128 has the highest F1 score on average and the flattest

trendline. It seems, that (400 x 400) px patches capture optimal amount of context and at the same time

are capable of maintaining the most relevant information when down-scaled to (128 x 128) px (32% of

the original size). Patch size is not the only hyperparameter introduced by tiling. The tile (in my case the

patch) overlap may be another important factor to consider because it can affect the quality of predictions

in border regions of the patches cropped from the original image. Cropping can lead to the boundary

effect that introduces a bias in these regions due to zero padding, an artifact that is more pronounced

when patches are stitched together afterwards. Solutions to this problem are averaging overlapping

layers (Huang et al., 2018) or cropping away the edges of the output labelled image (Reina et al., 2020;

Ronneberger et al., 2015; Stoian et al., 2019), which is considered to be a superior approach (Huang et

al., 2018). The work of Iglovikov et al. (2017) went even further on this and added a cropping layer

directly to the output layers of the network that do the cropping automatically and losses on boundary

artifacts are not back-propagated. This thesis doesn’t address this issue but exploring the effect of this

phenomenon on the particular data used in this study could be a good next step in the further

experimentations.

The harmful impact of down-scaling to a coarser resolution can be best seen in Figure 20. Degrading

the imagery into too small resolutions significantly hampers the ability to detect structures and textures.

The closer is the size of the rescaled patch to the original size, the higher F1 score is achieved. This is

especially important in cases where the size of the objects of interest is already small, because with

down-scaling they become even harder to see (Audebert et al., 2018). Moreover, for shrub detection not

only the context is important, but also the information present within the class. Excessive downscaling

thus indeed leads to the loss of relevant information (Reina et al., 2020; W. Zhang et al., 2019), however

it is an interesting technique for shortening the training time (Audebert et al., 2018), with the scale 1:2

as a good tradeoff between the little drop in performance but a shorter training time (Rakhlin et al.,

2018). Certainly, the best results were brought by the three most time demanding experiments – C-

3808_288x288, D-1658_400x400 and E-1658_496x496, all with a scale ~1:1. All yielded F1 score 0.90,

but took 50, 46 and 60 hours to train, respectively. At the same time, F1 score dropped just for a few

percent for the models using the same sub-datasets with the scale ~1:2, but the training times were

much less (9.2, 9 and 15.8 hours, respectively). Besides, qualitatively they didn’t bring much value, as

was showed in Figure 17. Different patch size doesn’t seem to have much of an impact on 1:1 and 1:2

rescaling for these sub-datasets. Patches (300 x 300) px seem to provide sufficient amount of spatial

detail and an enlargement for additional 100-200 px brings marginal improvements.

The configuration of pre-processing techniques yielding the best results depends on the problem and

on the object of interest (Guirado et al., 2017). Finding an optimal set of these methods for this particular

problem would require further exhaustive research. One pre-processing method that could be helpful

with this task is elimination of a background based on a color threshold in grayscale images (Guirado et

al., 2017). In overall, I believe that one of the most important factors affecting the performance was

 68

inaccurate labelling. There were cases when the model correctly classified pixels which I labeled

incorrectly, similarly as for Rakhlin et al. (2018), thus, the performance might have been in fact better

than indicated when compared to the reference data. Nevertheless, high quality labels remain to be one

of the central elements of image classification success. The most problematic to classify correctly were

generally the border regions of shrubs. This could be explained by U-Net’s lack of geometric accuracy,

which leaves the edges of the classes not sharp (Stoian et al., 2019), but also by the fact that labelling

of these parts was very challenging and therefore it could happen that they were labelled incorrectly

from the very beginning. This issue was vanishing with the growing size of sub-datasets, patch

dimensions and model input size.

6.3 Balancing the datasets

This experiment showed dropping performance in all metrics but recall with the increasing proportion of

the shrub class representation in the dataset (Table 24). According to the precision trend, the model’s

ability to distinguish shrubs from other land cover classes got worse, while the improvement in recall

might have come from the fact that there were simply more shrub pixels to spot in the dataset. Moreover,

the distribution of shrub pixels is shifted more to the right (Figure A 8), further favoring this class in the

recall results.

Model C-1664_144x144(45%), using the most balanced dataset, was expected to perform the best,

considering some other studies (Wei & Jr, 2013), but the opposite was true. The learning process seems

to be not robust enough, possibly from two reasons: 1.) The used sub-dataset was created with heavy

augmentation from only 15 patches, which significantly lowers down the representativeness of already

small data sample. This small sub-dataset surely doesn’t effectively cover the different arrangements of

land cover in such a diverse heterogeneous scene as is present in my data, which means the model’s

recognizing abilities may not be sufficient with new data. The under-sampling had definitely led to the

loss of important information. 2.) The suitability of this kind of approach depends on the problem and

whether under- (or over-) representation is a normal characteristic of the target class in real life

situations, too. Because the distribution of shrubs is random in reality, respecting this feature in the

training data may yield better results.

6.4 Hyperparameter tuning

Similarly to the case of P. Zhang et al. (2018), adding more filters improves the performance only until

certain point after which it starts to drop, disagreeing with the general notion that deeper networks

achieve better accuracies (Li et al., 2018). In my case, there was a little gain especially in recall (+0.03)

and subsequently F1 score (+0.02) when doubling the initial number of filters from 16 to 32, but both

metrics experienced drop of -0.13 and -0.08, respectively, after further doubling of the filters to 64.

Accuracy and precision remained more or less constant. Using more filters made the network deeper

 69

and more complicated, which was probably not necessary for my kind of data or brought too many

weights for the amount of available data that could cause overfitting. The model might have learnt more

complex features that are actually shared with other classes such as trees, which created a confusion

in the classification. But because trees are a majority class in the dataset – almost half, while shrubs

represent only about ¼ (Table 3), the model decided to favor the tree class in ambiguous situations

because it simply saw more pixels with the particular feature being labeled as trees, or more precisely

‘non-shrubs’. This theory would explain the drop in recall between using 32 and 64 filters. The F1 score

of the best performing model C-1664_144x144(filters=32) was 0.84 but took 10 hours to train, while the

model C-1664_144x144(filters=16) achieved 0.82 F1 score in half the time.

Excluding the outlier recall (and therefore F1 score) of a model C-1664_144x144(45%), the metrics are

generally getting worse with the increase of the dropout rate. The performance worsens considerably

already with 0.5 dropout rate. Increasing the number of dropped neurons to 75% doesn’t lead to a strong

decline in accuracy and precision but recall jumps to 1. Given the low value of accuracy and precision,

the model is evidently labeling most of the pixels as shrubs, because it was not able to learn enough of

important features. With a difficult task that includes a landcover as complex as the one present by the

data used in this thesis, the more neurons facilitate the learning process the better. Therefore, using

high dropout rates might not be a reasonable choice in problems like this one.

The batch size in my case didn’t have much of an impact on the results. Probably the range was not

sufficiently big and more distinct results would be obtained with larger differences in the batch sizes.

Some (Masters & Luschi, 2018) reported the best results when using batch size as small as 2 or 4, while

others (Iglovikov et al., 2017) favored batch sizes as big as 128. It seems that this hyperparameter, as

many others, is also depending on many factors such as the type of a problem or if e.g. a transfer

learning was applied, as in the case of Iglovikov et al. (2017). While there might be a room for further

exploration of a batch size tuning, it would be reliant on computational resources. Moreover, taking into

account that the batch size of 32 is generally recommended as an optimum, and that no significant

changes were recorded with batch size changes in my experiments, I would not recommend going

deeper with the topic in this particular case. However, an interesting way forward could be exploring

whether larger batch sizes are superior to larger patch sizes in terms of improving the performance, as

in case of Iglovikov et al. (2017), who traded the receptive field size in favor of a larger batch size. They

used a small training set (25 images) with quite different images, which is a peculiarity shared with this

thesis, but our studies diverge in terms of the image contents and the usage of a transfer learning, and

the outcomes may therefore differ.

There are many other hyperparameters that could be further explored in order to improve the

classification results, but the optimal model generally depends on the used data35, so it is not only

important to tune the hyperparameters, but also to choose them diligently, since some of them may have

significant impact on the results while others can have almost none.

35 https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-
validation.html

https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html
https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html

 70

6.5 Test data

In overall, models performed worse on the new data. The drop in performance was expected since some

small overfitting on the training set is common and the validation data came from the same image.

However, a lower decrease was expected. One possible explanation could be that I didn’t split one big

dataset into train, validation and test sets, but I used data from entirely separate images for testing

(excluding test set 1). The best average performance of all the experiments was achieved by test set 2

(0.70), while test sets 1 and 3 performed equally (0.61, see Table A 9 in the Appendix). Worse

performance of a test set 1 could simply have been caused by statistics – the test sets were not equal

in terms of size, because the test set 1 only consisted of one patch while all of the other test sets

consisted of two. An unlucky pick of a patch, i.e. having for example a different distribution than in train

and validation data, even if coming from the same image could have caused difficulties during

classification, causing bigger differences between validation and test results. Looking at the Figure A 3,

the area selected as a test patch could really be perceived as a bit visually different from the rest,

containing a big amount of bare land with a characteristic brightness as well as very dense shrubs on a

skewed surface. I also tested this theory by switching the test and validation sets; i.e. I used a test set

as a validation set and vice-versa. The validation set (patches from the same dataset as the training

ones) performed better whether it was used for validation or testing. These results confirmed that my

choice of a patch for the test set 1 was an unlucky pick somehow different from train and validation sets.

Patches in the test set 3 came from different images taken in a different year, that was most likely the

single biggest factor worsening the performance. The best evaluations were on test set 2 because these

images were taken on the same day as the training ones and two patches were used, decreasing the

risk of the chosen test data to be too area specific. The image from which training and validation patches

were derived didn’t supply various enough data and the patches were an unrepresentative sample of

the shrub patterns in the area, e.g. an area full of shrubs that would be perpendicular to the drone (like

in the second image in a test set 3, see Figure A 6 in the Appendix) is missing entirely in the training

data, moreover all the patches are too close to each other and overlapping, which may be further

decreasing the variety. A more robust model could have been obtained by training on a larger dataset

of patches derived from different images, taken on different days and in different years, that would

improve the representativeness of the data and could have increased the variety of features to learn.

The winter images are too different to be extrapolated from the summer data. A separate model is

necessary.

Higher testing performances (0.76 to 0.77) were generally achieved by models using bigger patch sizes

and model input dimensions, in accordance with the validation results from the Sub-datasets B-E: patch

size, scale and data augmentation section. Along with the data augmentation, these three methods

proved to increase the classification performance, fulfilling the research objective no. III (1.4) of this

thesis. The Hyperparameter tuning didn’t bring any significant improvements in the performance, neither

 71

for validation, nor for test sets. Generally, the gap between validation and test scores are relative to the

data, selected metrics and models36.

Comparing my test results to some other CNNs trained from scratch (Hussain et al., 2019), and

considering the complexity of the land cover of the presented area and the main objective of this work,

the presented methods proved to be feasible even for an ordinary user and the results satisfactory,

especially considering that there is a potential for further improvements in performance, meeting the

research objective no. IV (1.4).

36 https://machinelearningmastery.com/the-model-performance-mismatch-problem/

https://machinelearningmastery.com/the-model-performance-mismatch-problem/

 72

 73

7 Conclusions and future work

This thesis explored the potential of detecting the target vegetation type in a complex heterogeneous

landscape with U-Net. Shrubs are wild plants with different shapes, sizes and distribution patterns. The

difficulty of this task was increased further with the fact that the data contained more than species of

shrubs scattered in the forest area. Shrubs are of a priority interest in terms of fire risk in dry

Mediterranean regions and mapping them can serve as a basis for better informed land management

and reduction of the forest fire hazard. This work consisted of two main parts: creating and manually

labelling the datasets and developing a method to increase a detection accuracy using a U-Net neural

network. The impact of data augmentation, tiling, rescaling, balancing the dataset and hyperparameter

tuning (number of filters, dropout rate and batch size) was explored in this regard.

First, the task of creating a dataset was addressed. Labelling is an intensive and time demanding manual

labor, because of which I was able to create only a very small training dataset of 13 (800 x 800) px tiles

and later I relied on a heavy data augmentation. Distinguishing shrubs from other vegetation types in

remote sensing images is a challenge for non-experts as well as for automatic detection methods.

Particularly problematic were the border parts of the vegetation and skewed border regions of the fish-

eye images. Consistency was problematic especially with labelling shadows when it was sometimes

difficult to distinguish between the shadow as a separate class or as a part of another class. The

presence of labeling inaccuracies is therefore certain. I consider a very little labelled data that were not

sufficient for learning of all the important features from scratch and incorrect labels as the biggest

weaknesses of this work. Using bigger datasets with patches derived from several images taken during

multiple flights and employing them in the training and validation process could have a significant

positive effect on the results. Besides this, classification accuracy depends on how distinguishable the

shrubs are from the surrounding. Good timing regarding phenological stage (which was perfect in my

case), lower flying altitudes or using a higher resolution sensor to obtain more detail could help to

alleviate this issue. However, a big intra-class and small inter-class variance in spectral signatures of

presented vegetation classes will remain a challenge.

Factors with the most significant impact on the detection capability were data augmentation, patch size

and model input dimensions. The biggest datasets containing 3808 samples yielded the highest F1

score of around 0.83 for all models. Further enlargement of the datasets could increase the performance

even more. Modest amount of labeled data resulted in heavy data augmentation. I believe that further

improvements could be achieved mainly by relying on more labelled data from spatially independent

samples, rather than on heavy augmentation that can lead to overfitting and in case of very little data it

can mask the problem of low representativeness, that can be revealed with new data. Larger volumes

of data would also give more space to create more proportional datasets without too much

augmentation. However, augmentation is still an extremely useful tool and for the sake of the future

research it would be useful to find the best configuration of the augmentation techniques suitable for

these data. Regarding the patch size, high spatial heterogeneity of the vegetation in my study area made

the task particularly demanding and simply using the window size bigger than the physical size of the

 74

target plants was not enough. Rather than thinking in terms of individual plants, it was necessary to

consider the structures many plants formed together. Increasing the patch size was benefitting the

performance up to (300 x 300) px. Patches bigger than that didn’t bring any significant improvement in

performance, instead it increased the training time and computational demands. Tiling also brings along

the boundary effect. This was not addressed in my study but assessing predictions in the border regions

of this particular data would be also a good topic to investigate in the future, especially so for the data

stitching. The last helpful technique was rescaling of the patches. Degrading the image resolution leads

to a loss of information, but this technique was valuable for cutting down the training time, which was an

important variable for me. Scale 1:2 significantly decreased the training time and didn’t lead to a dramatic

drop in performance.

With the increasingly balanced dataset, the F1 score was dropping for validation but increasing for

testing. The highest F1 score averaged for all three test sets was 0.71. More experiments would be

needed to draw a meaningful conclusions in this area, ideally with more diverse train and test data and

without under-sampling and subsequent heavy augmentation of the training datasets. Experimenting

with three hyperparameters: the number of filters, dropout rate and batch size didn’t bring any significant

benefits. The next steps could focus on finding an optimal configuration of pre-processing methods as

well as hyperparameters for this particular task. The availability of R and NIR bands could be also

explored more, as well as employing transfer learning.

This thesis demonstrated the capacity of U-Net for mapping the irregular shrub cover, presented

methods improving the classification results and provided recommendations for a future research. The

work has a potential to serve as an information tool for land planning and grazing management and

could be also modified and repurposed to map other vegetation types, such as trees, or to be used as

e.g. a forest inventory tool.

 75

8 References

Ahmed, B., & Noman, M. A. A. (2015). Land cover classification for satellite images based on

normalization technique and Artificial Neural Network. 2015 International Conference on

Computer and Information Engineering (ICCIE), 138–141.

https://doi.org/10.1109/CCIE.2015.7399300

Ashapure, A., Jung, J., Chang, A., Oh, S., Maeda, M., & Landivar, J. (2019). A Comparative Study of

RGB and Multispectral Sensor-Based Cotton Canopy Cover Modelling Using Multi-Temporal

UAS Data. Remote Sensing, 11(23), 2757. https://doi.org/10.3390/rs11232757

Audebert, N., Le Saux, B., & Lefèvre, S. (2018). Beyond RGB: Very high resolution urban remote

sensing with multimodal deep networks. ISPRS Journal of Photogrammetry and Remote

Sensing, 140, 20–32. https://doi.org/10.1016/j.isprsjprs.2017.11.011

Ayhan, B., & Kwan, C. (2020). Tree, Shrub, and Grass Classification Using Only RGB Images. Remote

Sensing, 12(8), 1333. https://doi.org/10.3390/rs12081333

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2016). SegNet: A Deep Convolutional Encoder-Decoder

Architecture for Image Segmentation. ArXiv:1511.00561 [Cs]. http://arxiv.org/abs/1511.00561

Baena, S., Moat, J., Whaley, O., & Boyd, D. S. (2017). Identifying species from the air: UAVs and the

very high resolution challenge for plant conservation. PLOS ONE, 12(11), e0188714.

https://doi.org/10.1371/journal.pone.0188714

Bao, H. (2019). Investigations of the Influences of a CNN’s Receptive Field on Segmentation of

Subnuclei of Bilateral Amygdalae. ArXiv.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures.

ArXiv:1206.5533 [Cs]. http://arxiv.org/abs/1206.5533

Brandt, M., Tucker, C. J., Kariryaa, A., Rasmussen, K., Abel, C., Small, J., Chave, J., Rasmussen, L. V.,

Hiernaux, P., Diouf, A. A., Kergoat, L., Mertz, O., Igel, C., Gieseke, F., Schöning, J., Li, S.,

Melocik, K., Meyer, J., Sinno, S., … Fensholt, R. (2020). An unexpectedly large count of trees

in the West African Sahara and Sahel. Nature, 587(7832), 78–82.

https://doi.org/10.1038/s41586-020-2824-5

 76

Buscombe, D., & Ritchie, A. C. (2018). 2 Landscape classification with deep neural networks. 23.

Cao, J., Leng, W., Liu, K., Liu, L., He, Z., & Zhu, Y. (2018). Object-Based Mangrove Species

Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface

Models. Remote Sensing, 10(1), 89. https://doi.org/10.3390/rs10010089

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). DeepLab: Semantic Image

Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.

ArXiv:1606.00915 [Cs]. http://arxiv.org/abs/1606.00915

Chen, Y., Wang, K., Liao, X., Qian, Y., Wang, Q., Yuan, Z., & Heng, P.-A. (2019). Channel-Unet: A Spatial

Channel-Wise Convolutional Neural Network for Liver and Tumors Segmentation. Frontiers in

Genetics, 10, 1110. https://doi.org/10.3389/fgene.2019.01110

Congedo, L. (2016). Semi-automatic classification plugin documentation. Release, 4(0.1), 29.

Csillik, O., Cherbini, J., Johnson, R., Lyons, A., & Kelly, M. (2018). Identification of Citrus Trees from

Unmanned Aerial Vehicle Imagery Using Convolutional Neural Networks. Drones, 2(4), 39.

https://doi.org/10.3390/drones2040039

Diakogiannis, F. I., Waldner, F., Caccetta, P., & Wu, C. (2020). ResUNet-a: A deep learning framework

for semantic segmentation of remotely sensed data. ISPRS Journal of Photogrammetry and

Remote Sensing, 162, 94–114. https://doi.org/10.1016/j.isprsjprs.2020.01.013

Flood, N., Watson, F., & Collett, L. (2019). Using a U-net convolutional neural network to map woody

vegetation extent from high resolution satellite imagery across Queensland, Australia.

International Journal of Applied Earth Observation and Geoinformation, 82, 101897.

https://doi.org/10.1016/j.jag.2019.101897

Fourure, D., Emonet, R., Fromont, E., Muselet, D., Tremeau, A., & Wolf, C. (2017). Residual Conv-

Deconv Grid Network for Semantic Segmentation. ArXiv:1707.07958 [Cs].

http://arxiv.org/abs/1707.07958

Fricker, G. A., Ventura, J. D., Wolf, J. A., North, M. P., Davis, F. W., & Franklin, J. (2019). A Convolutional

Neural Network Classifier Identifies Tree Species in Mixed-Conifer Forest from Hyperspectral

Imagery. Remote Sensing, 11(19), 2326. https://doi.org/10.3390/rs11192326

 77

Fröhlich, B., Bach, E., Walde, I., Hese, S., Schmullius, C., & Denzler, J. (2013). Land cover classification

of satellite images using contextual information. ISPRS Annals of Photogrammetry, Remote

Sensing and Spatial Information Sciences, II-3/W1, 1–6. https://doi.org/10.5194/isprsannals-II-

3-W1-1-2013

Gaetano, R., Ienco, D., Ose, K., & Cresson, R. (2018). A Two-Branch CNN Architecture for Land Cover

Classification of PAN and MS Imagery. Remote Sensing, 10(11), 1746.

https://doi.org/10.3390/rs10111746

Garg, L., Shukla, P., Singh, S., Bajpai, V., & Yadav, U. (2019). Land Use Land Cover Classification from

Satellite Imagery using mUnet: A Modified Unet Architecture: Proceedings of the 14th

International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory

and Applications, 359–365. https://doi.org/10.5220/0007370603590365

Gbodjo, Y., Ienco, D., Leroux, L., Interdonato, R., Gaetano, R., & Ndao, B. (2020). Object-Based Multi-

Temporal and Multi-Source Land Cover Mapping Leveraging Hierarchical Class Relationships.

Remote Sensing, 12, 2814. https://doi.org/10.3390/rs12172814

Getzin, S., Wiegand, K., & Schöning, I. (2012). Assessing biodiversity in forests using very high-

resolution images and unmanned aerial vehicles. Methods in Ecology and Evolution, 3(2), 397–

404. https://doi.org/10.1111/j.2041-210X.2011.00158.x

Girshick, R. (2015). Fast R-CNN. ArXiv:1504.08083 [Cs]. http://arxiv.org/abs/1504.08083

GO - SILVPAST - Terraprima. (n.d.). Retrieved September 19, 2020, from

https://www.terraprima.pt/pt/projecto/23

Goyal, P., Dollar, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., & He, K.

(n.d.). Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. 12.

Graham, S., Chen, H., Gamper, J., Dou, Q., Heng, P.-A., Snead, D., Tsang, Y. W., & Rajpoot, N. (2019).

MILD-Net: Minimal information loss dilated network for gland instance segmentation in colon

histology images. Medical Image Analysis, 52, 199–211.

https://doi.org/10.1016/j.media.2018.12.001

 78

Guirado, E., Tabik, S., Alcaraz-Segura, D., Cabello, J., & Herrera, F. (2017). Deep-Learning

Convolutional Neural Networks for scattered shrub detection with Google Earth Imagery.

ArXiv:1706.00917 [Cs]. http://arxiv.org/abs/1706.00917

Hellesen, T., & Matikainen, L. (2013). An Object-Based Approach for Mapping Shrub and Tree Cover on

Grassland Habitats by Use of LiDAR and CIR Orthoimages. Remote Sensing, 5(2), 558–583.

https://doi.org/10.3390/rs5020558

Hu, F., Xia, G.-S., Hu, J., & Zhang, L. (2015). Transferring Deep Convolutional Neural Networks for the

Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sensing, 7(11),

14680–14707. https://doi.org/10.3390/rs71114680

Huang, B., Reichman, D., Collins, L., Bradbury, K., & Malof, J. M. (2018). Tiling and Stitching

Segmentation Output for Remote Sensing: Basic Challenges and Recommendations.

Undefined. /paper/Tiling-and-Stitching-Segmentation-Output-for-Remote-Huang-

Reichman/57dc15369c0be30023320cc53a3c17c7c9ee6737

Hung, C., Xu, Z., & Sukkarieh, S. (2014). Feature Learning Based Approach for Weed Classification

Using High Resolution Aerial Images from a Digital Camera Mounted on a UAV. Remote

Sensing, 6(12), 12037–12054. https://doi.org/10.3390/rs61212037

Hussain, M., Bird, J. J., & Faria, D. R. (2019). A Study on CNN Transfer Learning for Image

Classification. In A. Lotfi, H. Bouchachia, A. Gegov, C. Langensiepen, & M. McGinnity (Eds.),

Advances in Computational Intelligence Systems (Vol. 840, pp. 191–202). Springer International

Publishing. https://doi.org/10.1007/978-3-319-97982-3_16

Ibtehaz, N., & Rahman, M. S. (2020). MultiResUNet: Rethinking the U-Net Architecture for Multimodal

Biomedical Image Segmentation. Neural Networks, 121, 74–87.

https://doi.org/10.1016/j.neunet.2019.08.025

Iglovikov, V., Mushinskiy, S., & Osin, V. (2017). Satellite Imagery Feature Detection using Deep

Convolutional Neural Network: A Kaggle Competition. ArXiv:1706.06169 [Cs].

http://arxiv.org/abs/1706.06169

Iglovikov, V., & Shvets, A. (2018). TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for

Image Segmentation. ArXiv:1801.05746 [Cs]. http://arxiv.org/abs/1801.05746

 79

Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift. ArXiv:1502.03167 [Cs]. http://arxiv.org/abs/1502.03167

Isensee, F., Jaeger, P., Kohl, S., Petersen, J., & Maier-Hein, K. (2020). nnU-Net: A self-configuring

method for deep learning-based biomedical image segmentation. Nature Methods, 1–9.

https://doi.org/10.1038/s41592-020-01008-z

Jiang, J., Hu, Y., Liu, C.-J., Halpenny, D., Hellmann, M. D., Deasy, J. O., Mageras, G., & Veeraraghavan,

H. (2019). Multiple Resolution Residually Connected Feature Streams For Automatic Lung

Tumor Segmentation From CT Images. IEEE Transactions on Medical Imaging, 38(1), 134–144.

https://doi.org/10.1109/TMI.2018.2857800

Kattenborn, T., Eichel, J., Wiser, S., Burrows, L., Fassnacht, F. E., & Schmidtlein, S. (2020).

Convolutional Neural Networks accurately predict cover fractions of plant species and

communities in Unmanned Aerial Vehicle imagery. Remote Sensing in Ecology and

Conservation, rse2.146. https://doi.org/10.1002/rse2.146

Kerle, N., Nex, F., Gerke, M., Duarte, D., & Vetrivel, A. (2019). UAV-Based Structural Damage Mapping:

A Review. ISPRS International Journal of Geo-Information, 9(1), 14.

https://doi.org/10.3390/ijgi9010014

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2017). On Large-Batch

Training for Deep Learning: Generalization Gap and Sharp Minima. ArXiv:1609.04836 [Cs,

Math]. http://arxiv.org/abs/1609.04836

Kim, M., Warner, T. A., Madden, M., & Atkinson, D. S. (2011). Multi-scale GEOBIA with very high spatial

resolution digital aerial imagery: Scale, texture and image objects. International Journal of

Remote Sensing, 32(10), 2825–2850. https://doi.org/10.1080/01431161003745608

Kinaneva, D., Hristov, G., Raychev, J., & Zahariev, P. (2019). Early Forest Fire Detection Using Drones

and Artificial Intelligence. 2019 42nd International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO), 1060–1065.

https://doi.org/10.23919/MIPRO.2019.8756696

Kingma, D. P., & Ba, J. (2017). Adam: A Method for Stochastic Optimization. ArXiv:1412.6980 [Cs].

http://arxiv.org/abs/1412.6980

 80

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional

neural networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386

Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep Learning Classification of Land

Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and Remote Sensing

Letters, 14(5), 778–782. https://doi.org/10.1109/LGRS.2017.2681128

Langford, Z. L., Kumar, J., Hoffman, F. M., Breen, A. L., & Iversen, C. M. (2019). Arctic Vegetation

Mapping Using Unsupervised Training Datasets and Convolutional Neural Networks. Remote

Sensing, 11(1), 69. https://doi.org/10.3390/rs11010069

Längkvist, M., Kiselev, A., Alirezaie, M., & Loutfi, A. (2016). Classification and Segmentation of Satellite

Orthoimagery Using Convolutional Neural Networks. Remote Sensing, 8(4), 329.

https://doi.org/10.3390/rs8040329

Li, R., Liu, W., Yang, L., Sun, S., Hu, W., Zhang, F., & Li, W. (2018). DeepUNet: A Deep Fully

Convolutional Network for Pixel-Level Sea-Land Segmentation. IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, 11(11), 3954–3962.

https://doi.org/10.1109/JSTARS.2018.2833382

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W.

M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image

analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation.

ArXiv:1411.4038 [Cs]. http://arxiv.org/abs/1411.4038

Lopatin, J., Dolos, K., Kattenborn, T., & Fassnacht, F. E. (2019). How canopy shadow affects invasive

plant species classification in high spatial resolution remote sensing. Remote Sensing in

Ecology and Conservation, 5(4), 302–317. https://doi.org/10.1002/rse2.109

Lopatin, J., Fassnacht, F. E., Kattenborn, T., & Schmidtlein, S. (2017). Mapping plant species in mixed

grassland communities using close range imaging spectroscopy. Remote Sensing of

Environment, 201, 12–23. https://doi.org/10.1016/j.rse.2017.08.031

 81

Lovreglio, R., Meddour-Sahar, O., & Leone, V. (2014). Goat grazing as a wildfire prevention tool: A basic

review. IForest - Biogeosciences and Forestry, 7(4), 260–268. https://doi.org/10.3832/ifor1112-

007

Mahdianpari, M., Salehi, B., Rezaee, M., Mohammadimanesh, F., & Zhang, Y. (2018). Very Deep

Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote

Sensing Imagery. Remote Sensing, 10(7), 1119. https://doi.org/10.3390/rs10071119

Makantasis, K., Karantzalos, K., Doulamis, A., & Doulamis, N. (2015). Deep supervised learning for

hyperspectral data classification through convolutional neural networks. 2015 IEEE

International Geoscience and Remote Sensing Symposium (IGARSS), 4959–4962.

https://doi.org/10.1109/IGARSS.2015.7326945

Malenovský, Z., Lucieer, A., King, D. H., Turnbull, J. D., & Robinson, S. A. (2017). Unmanned aircraft

system advances health mapping of fragile polar vegetation. Methods in Ecology and Evolution,

8(12), 1842–1857. https://doi.org/10.1111/2041-210X.12833

Maltezos, E., Doulamis, N., Doulamis, A., & Ioannidis, C. (2017). Deep convolutional neural networks

for building extraction from orthoimages and dense image matching point clouds. Journal of

Applied Remote Sensing, 11(4), 042620. https://doi.org/10.1117/1.JRS.11.042620

Mangewa, L. J., Ndakidemi, P. A., & Munishi, L. K. (2019). Integrating UAV Technology in an Ecological

Monitoring System for Community Wildlife Management Areas in Tanzania. Sustainability,

11(21), 6116. https://doi.org/10.3390/su11216116

Marques, A., Martins, I. S., Kastner, T., Plutzar, C., Theurl, M. C., Eisenmenger, N., Huijbregts, M. A. J.,

Wood, R., Stadler, K., Bruckner, M., Canelas, J., Hilbers, J. P., Tukker, A., Erb, K., & Pereira, H.

M. (2019). Increasing impacts of land use on biodiversity and carbon sequestration driven by

population and economic growth. Nature Ecology & Evolution, 3(4), 628–637.

https://doi.org/10.1038/s41559-019-0824-3

Masters, D., & Luschi, C. (2018). Revisiting Small Batch Training for Deep Neural Networks.

ArXiv:1804.07612 [Cs, Stat]. http://arxiv.org/abs/1804.07612

Matese, A., Toscano, P., Di Gennaro, S. F., Genesio, L., Vaccari, F. P., Primicerio, J., Belli, C., Zaldei, A.,

Bianconi, R., & Gioli, B. (2015). Intercomparison of UAV, Aircraft and Satellite Remote Sensing

 82

Platforms for Precision Viticulture. Remote Sensing, 7(3), 2971–2990.

https://doi.org/10.3390/rs70302971

Müllerová, J., Brůna, J., Bartaloš, T., Dvořák, P., Vítková, M., & Pyšek, P. (2017). Timing Is Important:

Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring. Frontiers in Plant Science,

8, 887. https://doi.org/10.3389/fpls.2017.00887

Nivaggioli, A., & Randrianarivo, H. (2019). Weakly Supervised Semantic Segmentation of Satellite

Images. ArXiv:1904.03983 [Cs]. http://arxiv.org/abs/1904.03983

Nogueira, K., Miranda, W. O., & Santos, J. A. D. (2015). Improving Spatial Feature Representation from

Aerial Scenes by Using Convolutional Networks. 2015 28th SIBGRAPI Conference on

Graphics, Patterns and Images, 289–296. https://doi.org/10.1109/SIBGRAPI.2015.39

Paisitkriangkrai, S., Sherrah, J., Janney, P., & Van Den Hengel, A. (2016). Semantic labeling of aerial

and satellite imagery. https://doi.org/10.1109/JSTARS.2016.2582921

Paneque-Gálvez, J., McCall, M. K., Napoletano, B. M., Wich, S. A., & Koh, L. P. (2014). Small Drones

for Community-Based Forest Monitoring: An Assessment of Their Feasibility and Potential in

Tropical Areas. Forests, 5(6), 1481–1507. https://doi.org/10.3390/f5061481

Pérez-Rodríguez, L. A., Quintano, C., Marcos, E., Suarez-Seoane, S., Calvo, L., & Fernández-Manso,

A. (2020). Evaluation of Prescribed Fires from Unmanned Aerial Vehicles (UAVs) Imagery and

Machine Learning Algorithms. Remote Sensing, 12(8), 1295.

https://doi.org/10.3390/rs12081295

Pohlen, T., Hermans, A., Mathias, M., & Leibe, B. (2016). Full-Resolution Residual Networks for

Semantic Segmentation in Street Scenes. ArXiv:1611.08323 [Cs].

http://arxiv.org/abs/1611.08323

Proença, V., & Teixeira, C. M. G. L. (2019). Beyond meat: Ecological functions of livestock. Science,

366(6468), 962–962. https://doi.org/10.1126/science.aaz7084

Rakhlin, A., Davydow, A., & Nikolenko, S. (2018). Land Cover Classification from Satellite Imagery with

U-Net and Lovász-Softmax Loss. 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), 257–2574. https://doi.org/10.1109/CVPRW.2018.00048

 83

Ramanath, A., Muthusrinivasan, S., Xie, Y., Shekhar, S., & Ramachandra, B. (2019). NDVI Versus CNN

Features in Deep Learning for Land Cover Clasification of Aerial Images. IGARSS 2019 - 2019

IEEE International Geoscience and Remote Sensing Symposium, 6483–6486.

https://doi.org/10.1109/IGARSS.2019.8900165

Reina, G. A., Panchumarthy, R., Thakur, S. P., Bastidas, A., & Bakas, S. (2020). Systematic Evaluation

of Image Tiling Adverse Effects on Deep Learning Semantic Segmentation. Frontiers in

Neuroscience, 14, 65. https://doi.org/10.3389/fnins.2020.00065

Rey Benayas, J. (2007). Abandonment of agricultural land: An overview of drivers and consequences.

CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural

Resources, 2(057). https://doi.org/10.1079/PAVSNNR20072057

Ripple, W. J., Newsome, T. M., Wolf, C., Dirzo, R., Everatt, K. T., Galetti, M., Hayward, M. W., Kerley, G.

I. H., Levi, T., Lindsey, P. A., Macdonald, D. W., Malhi, Y., Painter, L. E., Sandom, C. J., Terborgh,

J., & Van Valkenburgh, B. (2015). Collapse of the world’s largest herbivores. Science Advances,

1(4), e1400103. https://doi.org/10.1126/sciadv.1400103

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image

Segmentation. ArXiv:1505.04597 [Cs]. http://arxiv.org/abs/1505.04597

Sankey, T., Donager, J., McVay, J., & Sankey, J. B. (2017). UAV lidar and hyperspectral fusion for forest

monitoring in the southwestern USA. Remote Sensing of Environment, 195, 30–43.

https://doi.org/10.1016/j.rse.2017.04.007

Sauder, N. (2014). Encoded Invariance in Convolutional Neural Networks. /paper/Encoded-Invariance-

in-Convolutional-Neural-Networks-Sauder/02ac327bd8dfd5df31529ce9a9bc87def9e85848

Scott, G. J., England, M. R., Starms, W. A., Marcum, R. A., & Davis, C. H. (2017). Training Deep

Convolutional Neural Networks for Land–Cover Classification of High-Resolution Imagery. IEEE

Geoscience and Remote Sensing Letters, 14(4), 549–553.

https://doi.org/10.1109/LGRS.2017.2657778

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2014). OverFeat: Integrated

Recognition, Localization and Detection using Convolutional Networks. ArXiv:1312.6229 [Cs].

http://arxiv.org/abs/1312.6229

 84

Shaban, M., Awan, R., Fraz, M. M., Azam, A., Snead, D., & Rajpoot, N. M. (2019). Context-Aware

Convolutional Neural Network for Grading of Colorectal Cancer Histology Images.

ArXiv:1907.09478 [Cs, Eess, Stat]. http://arxiv.org/abs/1907.09478

Simões, J. P. G. (2019). Relatório de Estágio Quinta da França – Terra Prima Sociedade Agrícola, lda.

Universidade de Lisboa Instituto Superior de Agronomia.

Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016, June 22). Deep Neural

Networks Based Recognition of Plant Diseases by Leaf Image Classification [Research Article].

Computational Intelligence and Neuroscience; Hindawi. https://doi.org/10.1155/2016/3289801

Stoian, A., Poulain, V., Inglada, J., Poughon, V., & Derksen, D. (2019). Land Cover Maps Production

with High Resolution Satellite Image Time Series and Convolutional Neural Networks:

Adaptations and Limits for Operational Systems. Remote Sensing, 11(17), 1986.

https://doi.org/10.3390/rs11171986

Terraprima -Sociedade Agrícola Lda. (2012). Plano de Gestão Florestal da Quinta da França – Resumo

Público. https://www.terraprima.pt/en/projecto/15

Treml, M., Arjona-Medina, J., Unterthiner, T., Durgesh, R., Friedmann, F., Schuberth, P., Mayr, A.,

Heusel, M., Hofmarcher, M., Widrich, M., Nessler, B., & Hochreiter, S. (2016). Speeding up

Semantic Segmentation for Autonomous Driving. https://openreview.net/forum?id=S1uHiFyyg

Turner, W. (2014). Sensing biodiversity. Science, 346(6207), 301–302.

https://doi.org/10.1126/science.1256014

Ulmas, P., & Liiv, I. (2020). Segmentation of Satellite Imagery using U-Net Models for Land Cover

Classification. ArXiv:2003.02899 [Cs]. http://arxiv.org/abs/2003.02899

Vanjare, A., S N, O., & Senthilnath, J. (2014). Satellite Image Processing for Land Use and Land Cover

Mapping. International Journal of Image, Graphics and Signal Processing, 6, 18–28.

https://doi.org/10.5815/ijigsp.2014.10.03

Volpi, M., & Tuia, D. (2017). Dense Semantic Labeling of Subdecimeter Resolution Images With

Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 55(2),

881–893. https://doi.org/10.1109/TGRS.2016.2616585

 85

Wang, S., Chen, W., Xie, S. M., Azzari, G., & Lobell, D. B. (2020). Weakly Supervised Deep Learning

for Segmentation of Remote Sensing Imagery. Remote Sensing, 12(2), 207.

https://doi.org/10.3390/rs12020207

Watanabe, S., Sumi, K., & Ise, T. (2018). Automatic vegetation identification in Google Earth images

using a convolutional neural network: A case study for Japanese bamboo forests. BioRxiv,

351643. https://doi.org/10.1101/351643

Wei, Q., & Jr, R. L. D. (2013). The Role of Balanced Training and Testing Data Sets for Binary Classifiers

in Bioinformatics. PLOS ONE, 8(7), e67863. https://doi.org/10.1371/journal.pone.0067863

Wen, D., Huang, X., Liu, H., Liao, W., & Zhang, L. (2017). Semantic classification of urban trees using

very high resolution satellite imagery. IEEE Journal of Selected Topics in Earth Observation and

Remote Sensing, 10(4), 1413–1424. https://doi.org/10.1109/JSTARS.2016.2645798

Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D.,

DeClerck, F., Wood, A., Jonell, M., Clark, M., Gordon, L. J., Fanzo, J., Hawkes, C., Zurayk, R.,

Rivera, J. A., Vries, W. D., Sibanda, L. M., … Murray, C. J. L. (2019). Food in the Anthropocene:

The EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet,

393(10170), 447–492. https://doi.org/10.1016/S0140-6736(18)31788-4

Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., & Sang, N. (2018). Learning a Discriminative Feature

Network for Semantic Segmentation. 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 1857–1866. https://doi.org/10.1109/CVPR.2018.00199

Yue, J., Zhao, W., Mao, S., & Liu, H. (2015). Spectral–spatial classification of hyperspectral images

using deep convolutional neural networks. Remote Sensing Letters, 6(6), 468–477.

https://doi.org/10.1080/2150704X.2015.1047045

Zhang, F., Du, B., & Zhang, L. (2015). Saliency-Guided Unsupervised Feature Learning for Scene

Classification. IEEE Transactions on Geoscience and Remote Sensing, 53(4), 2175–2184.

https://doi.org/10.1109/TGRS.2014.2357078

Zhang, P., Ke, Y., Zhang, Z., Wang, M., Li, P., & Zhang, S. (2018). Urban Land Use and Land Cover

Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite

Imagery. Sensors, 18(11), 3717. https://doi.org/10.3390/s18113717

 86

Zhang, W., Tang, P., & Zhao, L. (2019). Remote Sensing Image Scene Classification Using CNN-

CapsNet. Remote Sensing, 11(5), 494. https://doi.org/10.3390/rs11050494

Zheng, L., Zhao, Y., Wang, S., Wang, J., & Tian, Q. (2016). Good Practice in CNN Feature Transfer.

ArXiv:1604.00133 [Cs]. http://arxiv.org/abs/1604.00133

Zhou, Q., Yang, W., Gao, G., Ou, W., Lu, H., Chen, J., & Latecki, L. J. (2019). Multi-scale deep context

convolutional neural networks for semantic segmentation. World Wide Web, 22(2), 555–570.

https://doi.org/10.1007/s11280-018-0556-3

Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. (2020). UNet++: Redesigning Skip Connections

to Exploit Multiscale Features in Image Segmentation. ArXiv:1912.05074 [Cs, Eess].

http://arxiv.org/abs/1912.05074

 a

Appendix

Figure A 1 Easier recognition of rocks and bare soil. RGB image, July 2016. Settings: Red band: Band 1, Min:
150, Max: 255. Green band: Band 2, Min: 100, Max: 255. Blue band: Band 3, Min: 100, Max: 200.

Figure A 2 Easier recognition of vegetation. RGB image, July 2016. Settings: Red band: Band 1, Min: 0, Max: 200.
Green band: Band 2, Min: 50, Max: 200. Blue band: Band 1, Min: 0, Max: 200.

 b

Table A 1 The most impactful parameters for classification results and data visualization

Purpose Tool Specification Conclusion

Visualization

for

interpretation

Band rendering Interchanging bands.

Adjusting band intensities.

Applying Singleband

pseudocolor: color ramps,

interpolation types, no. of

classes.

Due to distinct reflectance of materials,

different colour composites can highlight

specific land surface features, e.g. bare

soil, vegetation, etc. Some of the results

can be found in Figure A 1and Figure A

2Table A 5 in the Appendix.

Better

classification

result

Region

Growing

Algorithm:

Distance

An interval defining the

maximum spectral distance

between the seed pixel and

the surrounding pixels

(Congedo, 2016).

Spectral Distance in my experiments

varied from 0.005 to 0.08. For easily

distinguishable objects, e.g. non-shaded

trees, the value could be higher, up to 0.08

(in radiometry units), whereas for the most

problematic groups (rocks and shrubs) the

interval was 0.005-0.01.

Minimum

Distance

The Euclidean distance

between spectral signatures

of image pixels and training

spectral signatures. If the

distance is greater than

threshold value, pixels are

unclassified.

This classification algorithm yielded better

results than Spectral Angle Mapping (it was

not possible to use Maximum Likelihood.

This problem was most likely related to the

pre-processing of study images, that

possibly contained NoData values or alpha

channels). I used default setting (0).

Land Cover

Signature

Classification

(LCS)

A classification that can be

used as alternative or in

combination with the

classification algorithm.

Pixels belonging to two or

more different classes are

classified as Class overlap

with raster value = -1000 and

are left unclassified or are

classified according to an

additional classification

algorithm (Congedo, 2016)

I used LCS in combination with Minimum

Distance classification algorithm.

Classification results were significantly

worse than when using only Minimum

Distance, however, it was useful for

assessing the proportion of pixels

classified as belonging to more than 1

class. According to the generated

confusion matrix, 12.5% of pixels (1752807

out of 13980121) were classified as

belonging to more than 1 class and 84%

were misclassified in this specific trial.

Number of

Regions of

interest (ROIs)

I tested 5 – 50 ROIs per class After certain threshold, higher number of

ROI samples does not yield significantly

better classification results. I concluded

this threshold to be approximately 15 ROI

samples per class for my study images.

 c

Table A 2 Names of images (taken in August 2019), tiles produced from them and tiles chosen for labelling

Image
number

Image name (identical for
TIFF and PNG)

Tiles names Tiles selected for labelling

1 2019_0830_105101_057 img1tile1… img1tile30

img1tile2.png, img1tile3.png,
img1tile4.png, img1tile5.png,

img1tile8.png, img1tile11.png,
img1tile12.png, img1tile13.png,
img1tile14.png, img1tile19.png,
img1tile20.png, img1tile21.png,

img1tile27.png
img1tile26.png – for testing

2 2019_0830_105110_059 img2tile1… img2tile30 -

3 2019_0830_105118_061 img3tile1… img3tile30 img3tile8.png – for testing

4 2019_0830_105127_063 img4tile1… img4tile30 -

5 2019_0830_105135_065 img5tile1… img5tile30 -

6 2019_0830_105144_067 img6tile1… img6tile30 -

7 2019_0830_105153_069 img7tile1… img7tile30 -

8 2019_0830_105315_083 img8tile1… img8tile30 -

9 2019_0830_105324_085 img9tile1… img9tile30 -

10 2019_0830_105332_087 img10tile1… img10tile30 -

11 2019_0830_105340_089 img11tile1… img11tile30 -

12 2019_0830_105349_091 img12tile1… img12tile30 -

13 2019_0830_105357_093 img13tile1… img13tile30 -

14 2019_0830_105405_095 img14tile1… img14tile30 Img14tile20.png – for testing

15 2019_0830_105519_107 img15tile1… img15tile30 -

16 2019_0830_105527_109 img16tile1… img16tile30 -

17 2019_0830_105535_111 img17tile1… img17tile30 -

18 2019_0830_105544_113 img18tile1… img18tile30 -

19 2019_0830_105552_115 img19tile1… img19tile30 -

20 2019_0830_105601_117 img20tile1… img20tile30 -

21 2019_0830_105609_119 img21tile1… img21tile30 -

 e

Figure A 3 Image 2019_0830_105101_057 and tiles selected for labelling. Red frame signifies training (and validation) tiles. Yellow is a testing tile for test set 1.

 g

Figure A 4 Image 2019_0830_105101_061 and tile img3tile8 selected for labelling for test set 2

Figure A 5 Image 2019_0830_105101_095 and tile img14tile20 selected for labelling for test set 2

 h

Figure A 6 Image 2020_0826_115241_057 and tiles img1tile19 and img1tile21 selected for labelling for test set 3

Figure A 7 Image 2019_1210_141336_069 and tiles img1tile28 and img1tile29 selected for labelling for test set 4

 i

Table A 3 Sub-dataset A experiments: confusion matrices & pixel count

 BASELINE - SUB-DATASET A (100x100)px: VAL SET.

Model
input
size
[px]

set size &
(val) set size

&
conf.matrix conf.matrix [%] act.shrubs

act.non-
shrubs

total pxs tot shrubs % in the set

set pxs:
(patch

size)^2 *
set size

(val) set pxs:
(patch

size)^2 *val
set size

TP FP TP [%] FP [%]

TP+FN FP+TN TP+TN+FP+FN (TP+FN)/ tot pxs
FN TN FN [%] TN [%]

128 832 84 206996 707120 15.040516 51.379976
215399 1160857 1376256 15.65108526

128 13631488 1376256 8403 453737 0.6105695 32.968939

128 1664 167 347615 139200 12.704632 5.0874813
623124 2113004 2736128 22.77393455

128 27262976 2736128 275509 1973804 10.069302 72.138584

128 3808 384 930008 349334 14.782079 5.5525144
1443692 4847764 6291456 22.94686635

128 62390272 6291456 513684 4498430 8.1647873 71.500619

 j

Table A 4 Sub-dataset B experiments: confusion matrices & pixel count

 SUB-DATASET B (200x200)px: VAL SET.

Model
input
size
[px]

set size &
(val) set
size &

conf.matrix conf.matrix [%] act.shrubs
act.non-
shrubs

total pxs tot shrubs % in the set

set pxs:
(patch

size)^2 *
set size

(val) set
pxs: (patch
size)^2 *val

set size

TP FP TP [%] FP [%]

TP+FN FP+TN TP+TN+FP+FN (TP+FN)/ tot pxs
FN TN FN [%] TN [%]

128 808 81 152449 38824 11.487344 2.9254678
309925 1017179 1327104 23.35348247

128 13238272 1327104 157476 978355 11.866139 73.72105

128 1658 166 442282 47008 16.261898 1.728398
680344 2039400 2719744 25.01500141

128 27164672 2719744 238062 1992392 8.7531032 73.256601

192 1658 166 1036843 175040 16.943474 2.8603999
1556635 4562789 6119424 25.43760655

192 61120512 6119424 519792 4387749 8.4941328 71.701994

128 3808 381 1110403 66646 17.788352 1.0676507
1487399 4754905 6242304 23.82772451

128 62390272 6242304 376996 4688259 6.0393726 75.104625

192 3808 381 2610208 290307 18.584363 2.0669505
3433406 10611778 14045184 24.44543268

192 140378112 14045184 823198 10321471 5.8610695 73.487617

 k

Table A 5 Sub-dataset C experiments: confusion matrices & pixel count

 SUB-DATASET C (300x300)px: VAL SET.

Model
input
size
[px]

set size &
(val) set
size &

conf.matrix conf.matrix [%] act.shrubs
act.non-
shrubs

total pxs
tot shrubs % in the

set

set pxs:
(patch

size)^2 *
set size

(val) set
pxs: (patch
size)^2 *val

set size

TP FP TP [%] FP [%]
TP+FN FP+TN TP+TN+FP+FN (TP+FN)/ tot pxs

FN TN FN [%] TN [%]

128 808 81 221328 235880 16.677517 17.77404
347366 979738 1327104 26.17473838

128 13238272 1327104 126038 743858 9.497221 56.051221

128 1664 167 554954 25096 20.282458 0.9172086
813537 1922591 2736128 29.73314845

128 27262976 2736128 258583 1897495 9.4506909 69.349643

144 1664 167 627350 29334 18.116256 0.8470905
874407 2588505 3462912 25.25062722

144 34504704 3462912 247057 2559171 7.1343713 73.902282

128 3808 381 1327801 42624 21.271008 0.6828248
1816802 4425502 6242304 29.10467033

128 62390272 6242304 489001 4382878 7.8336621 70.212505

144 3808 381 1607796 62251 20.350776 0.7879458
2082710 5817706 7900416 26.36202954

144 78962688 7900416 474914 5755455 6.0112531 72.850025

288 3808 381 6358099 731075 20.119506 2.3134066
7093538 24508127 31601665 22.44672235

288 315850752 31601665 735439 23777052 2.327216 75.239871

 l

Table A 6 Sub-dataset D experiments: confusion matrices & pixel count

 SUB-DATASET D (400x400)px: VAL SET.

Model
input
size
[px]

set size &
(val) set
size &

conf.matrix conf.matrix [%] act.shrubs
act.non-
shrubs

total pxs
tot shrubs % in the

set

set pxs:
(patch

size)^2 *
set size

(val) set
pxs: (patch
size)^2 *val

set size

TP FP TP [%] FP [%]
TP+FN FP+TN TP+TN+FP+FN (TP+FN)/ tot pxs

FN TN FN [%] TN [%]

128 808 81 297124 10235 22.388901 0.7712282
457448 869656 1327104 34.46964217

128 13238272 1327104 160324 859421 12.080741 64.75913

128 1658 166 565012 14354 20.774455 0.5277703
845771 1873973 2719744 31.09744888

128 27164672 2719744 280759 1859619 10.322994 68.374781

192 1658 166 1311234 37863 21.427409 0.6187347
1744661 4374763 6119424 28.51021599

192 61120512 6119424 433427 4336900 7.0828071 70.871049

400 1658 166 4938493 452075 18.593722 1.7020895
5549927 21010075 26560002 20.89580791

400 265280000 26560002 611434 20558000 2.3020857 77.402103

128 3808 381 1318805 12700 21.126895 0.2034505
1800891 4441413 6242304 28.84978047

128 62390272 6242304 482086 4428713 7.7228857 70.946769

 m

Table A 7 Sub-dataset E experiments: confusion matrices & pixel count

 SUB-DATASET E (500x500)px: VAL SET.

Model
input
size
[px]

set size &
(val) set
size &

conf.matrix conf.matrix [%] act.shrubs
act.non-
shrubs

total pxs
tot shrubs % in the

set

set pxs:
(patch

size)^2 *
set size

(val) set
pxs: (patch
size)^2 *val

set size

TP FP TP [%] FP [%]

TP+FN FP+TN TP+TN+FP+FN (TP+FN)/ tot pxs
FN TN FN [%] TN [%]

128 808 81 285 0 0.0214753 0
473181 853923 1327104 35.65515589

128 13238272 1327104 472896 853923 35.633681 64.344844

128 1652 166 587856 10855 21.614387 0.3991184
865465 1854279 2719744 31.82156115

128 27066368 2719744 277609 1843424 10.207174 67.77932

240 1652 166 2105657 53485 22.022015 0.5593729
2700721 6860879 9561600 28.24549239

240 95155200 9561600 595064 6807394 6.2234772 71.195135

496 1652 166 8665087 374331 21.217857 0.9166096
10117422 30721231 40838653 24.77413249

496 406418432 40838653 1452335 30346900 3.5562755 74.309258

128 3808 381 1454548 7387 23.30146 0.1183377
2076911 4165393 6242304 33.27154525

128 62390272 6242304 622363 4158006 9.9700848 66.610117

 n

Non-filtered sub-dataset C (117 instances:

100%)
Filtered sub-dataset C: patches containing more

than 1% of shrub pixels (96 instances: 82%)
Filtered sub-dataset C: patches containing

more than 45% of shrub pixels (15 instances: 13%)

S
h

ru
b

 c
la

s
s

 d
is

tr
ib

u
ti

o
n

 i
n

 n
o

n
-

a
u

g
m

e
n

te
d

 d
a

ta
s

e
ts

 (
1
1

7
 i

n
s
ta

n
c

e
s

)

(1. ~23% shrubs pixels in the set) (2. ~26% shrubs pixels in the set) (3. ~55% shrubs pixels in the set)

S
h

ru
b

 c
la

s
s

 d
is

tr
ib

u
ti

o
n

 i
n

 a
u

g
m

e
n

te
d

d
a

ta
s

e
ts

 (
1

6
6

4
 i

n
s

ta
n

c
e

s
)

(4. ~24% shrubs pixels in the set) (5. ~29% shrubs pixels in the set)
(6. ~60% shrubs pixels in the set)

Figure A 8 Overview of shrub distribution in the original and under-sampled versions of sub-dataset C

 o

Table A 8 Results on validation and test data. Symbol “-“ signifies models that were not evaluated on test data. Symbol “-//-“ signifies repeating values.
S

u
b

-d
a

ta
s
e

t

S
u

b
-d

a
ta

s
e

t

s
iz

e

M
o

d
e

l
in

p
u

t

(h
e

ig
h

t
x
 w

id
th

)

[p
x

]

O
th

e
r

s
p

e
c

if
ic

a
ti

o
n

s

V
a

l.
 a

c
c

u
ra

c
y

V
a

l.
 p

re
c

is
io

n

V
a

l.
 r

e
c

a
ll

V
a

l.
 F

1

V
a

l.
 I

o
U

T
e

s
t

s
e

t

T
e

s
t

a
c

c
u

ra
c
y

T
e

s
t

p
re

c
is

io
n

T
e

s
t

re
c
a

ll

T
e

s
t

F
1

T
e

s
t

Io
U

A
v
g

.
te

s
t

F
1
/

m
o

d
e
l

A
v
g

.
te

s
t

F
1
/

d
a
ta

s
e
t

fa
m

il
y

A
v
g

.
te

s
t

F
1
/

te
s
t

s
e
t

in
 a

d
a
ta

s
e
t

fa
m

il
y

A

832 128x128 0.46 0.23 0.96 0.31 0.22

1 0.84 0.39 0.30 0.46 0.30

0.55

0.58

test set 1

2 0.50 0.51 0.91 0.65 0.49 0.52

3 0.41 0.37 0.91 0.53 0.36 test set 2

1664 128x128 0.84 0.71 0.56 0.63 0.46

1 0.81 0.92 0.32 0.47 0.31

0.56

0.64

2 0.70 0.83 0.50 0.62 0.45 test set 3

3 0.69 0.58 0.61 0.60 0.42 0.58

3832 128x128 0.85 0.73 0.64 0.68 0.52

1 0.84 0.88 0.49 0.63 0.46

0.63

2 0.71 0.83 0.54 0.65 0.49

3 0.72 0.63 0.60 0.61 0.44

B

808 128x128 0.83 0.80 0.49 0.61 0.44 - - - - - - - - -

1658

128x128 0.87 0.90 0.65 0.76 0.61 - - - - - - - - -

192x192 0.87 0.86 0.67 0.75 0.60

1 0.85 0.92 0.47 0.62 0.45

0.61

0.62

test set 1

2 0.70 0.84 0.49 0.62 0.45 0.61

3 0.72 0.63 0.58 0.60 0.43 test set 2

3808

128x128 0.90 0.94 0.75 0.83 0.71 - - - - - - 0.63

192x192 0.91 0.90 0.76 0.82 0.70

1 0.84 0.88 0.46 0.60 0.43

0.62

test set 3

2 0.71 0.83 0.53 0.64 0.48 0.62

3 0.72 0.63 0.63 0.63 0.46

4 0.63 0.68 0.00 0.00 0.00

C
808 128x128 0.66 0.48 0.64 0.55 0.38 - - - - - - - - -

1664 128x128 0.84 0.86 0.68 0.80 0.66 - - - - - - - - -

 p

144x144 0.88 0.96 0.72 0.82 0.69

1 0.83 0.90 0.52 0.66 0.49

0.67

0.67

test set 1

2 0.63 0.88 0.63 0.74 0.58 0.68

3 0.63 0.78 0.52 0.62 0.45 test set 2

3808

128x128 0.85 0.97 0.73 0.83 0.71 - - - - - - 0.72

144x144 0.88 0.96 0.77 0.86 0.75

1 0.82 0.92 0.47 0.62 0.45

0.61

test set 3

2 0.60 0.88 0.52 0.65 0.49 0.60

3 0.62 0.78 0.43 0.55 0.38

288x288 0.94 0.90 0.90 0.90 0.81

1 0.89 0.84 0.72 0.77 0.63

0.72

2 0.74 0.76 0.76 0.76 0.61

3 0.67 0.56 0.71 0.62 0.45

4 1.00 0.00 0.00 0.00 0.00

C 1664

144x144
unfiltered

(orig. model;
orig.set.)

0.88 0.96 0.72 0.82 0.69
-

\\-
-\\- -\\- -\\- -\\- -\\-

0.68

144x144 1% (orig. model) 0.86 0.86 0.77 0.81 0.73

1 0.80 0.80 0.52 0.63 0.46

0.65

test set 1

2 0.63 0.88 0.62 0.73 0.57 0.66

3 0.63 0.78 0.48 0.59 0.42 test set 2

4 0.57 0.64 0.03 0.06 0.03 0.74

144x144 45% (orig. model) 0.74 0.73 0.78 0.76 0.75

1 0.74 0.59 0.80 0.68 0.52

0.71

test set 3

2 0.61 0.74 0.71 0.76 0.61 0.63

3 0.56 0.64 0.71 0.68 0.51

C 1664

144x144
Batch size = 15
(model sel.45%)

0.73 0.76 0.78 0.77 0.75

1 0.74 0.59 0.79 0.68 0.51

0.70

0.68

test set 1

2 0.60 0.74 0.73 0.76 0.61 0.66

3 0.56 0.63 0.72 0.67 0.51 test set 2

144x144
Batch size = 32
(model sel.45%;

orig.set.)
0.74 0.73 0.78 0.76 0.75

-
//-

-//- -//- -//- -//- -//- 0.74

144x144 0.72 0.76 0.78 0.77 0.73 1 0.71 0.54 0.71 0.61 0.44 0.64 test set 3

 q

Batch size = 50
(model sel.45%)

2 0.57 0.75 0.64 0.70 0.54 0.65

3 0.56 0.63 0.58 0.61 0.43

144x144
dropout = 0.05

(model sel.45%;
orig.set.)

0.74 0.73 0.78 0.76 0.75
-

//-
-//- -//- -//- -//- -//-

0.61

144x144
dropout = 0.2

(model sel.45%)
0.71 0.73 0.75 0.74 0.82

1 0.57 0.40 0.78 0.53 0.36

0.64

test set 1

2 0.60 0.71 0.68 0.74 0.58 0.50

3 0.51 0.58 0.71 0.64 0.47 test set 2

4 0.32 0.45 0.97 0.61 0.44 0.73

144x144
dropout = 0.5

(model sel.45%)
0.41 0.61 0.71 0.66 0.69

1 0.33 0.25 0.62 0.35 0.22

0.52

test set 3

2 0.39 0.58 0.70 0.69 0.52 0.61

3 0.32 0.43 0.67 0.53 0.36

4 0.34 0.44 0.70 0.57 0.40

144x144
dropout = 0.75

(model sel.45%)
0.41 0.60 1.00 0.75 0.60

1 0.31 0.30 0.91 0.45 0.29

0.59

2 0.39 0.59 0.90 0.71 0.55

3 0.26 0.44 0.92 0.60 0.43

4 0.31 0.44 0.94 0.60 0.42

144x144
filters = 16 (orig.
model; orig.set)

0.88 0.96 0.72 0.82 0.69
-

\\-
-\\- -\\- -\\- -\\- -\\-

0.66

test set 1

144x144
filters = 32 (orig.

model)
0.89 0.97 0.75 0.84 0.73

1 0.81 0.92 0.41 0.57 0.40

0.60

0.62

2 0.61 0.90 0.54 0.67 0.51 test set 2

3 0.63 0.81 0.42 0.55 0.38 0.71

144x144
filters = 64 (orig.

model)
0.87 0.97 0.62 0.76 0.61

1 0.82 0.86 0.51 0.64 0.47

0.70

test set 3

2 0.64 0.90 0.62 0.73 0.58 0.63

3 0.66 0.80 0.65 0.72 0.56

D
808 128x128 0.79 0.97 0.65 0.78 0.64 - - - - - -

1658 128x128 0.81 0.98 0.67 0.79 0.66 - - - - - -

 r

192x192 0.87 0.97 0.75 0.85 0.74

1 0.81 0.97 0.42 0.58 0.41

0.62

0.64

test set 1

2 0.63 0.88 0.61 0.72 0.57 0.62

3 0.62 0.74 0.47 0.57 0.40 test set 2

4 0.58 0.89 0.00 0.00 0.00 0.71

400x400 0.96 0.92 0.89 0.90 0.82

1 0.87 0.88 0.56 0.69 0.52

0.66

test set 3

2 0.75 0.76 0.61 0.68 0.51 0.59

3 0.75 0.60 0.62 0.61 0.44

3808 128x128 0.84 0.99 0.73 0.84 0.73

1 0.78 0.93 0.42 0.58 0.41

0.64

2 0.52 0.90 0.63 0.74 0.59

3 0.52 0.76 0.48 0.59 0.42

E

808 128x128 0.64 1.00 0.00 0.00 0.00 - - - - - - - - -

1658

128x128 0.79 0.98 0.68 0.80 0.67 - - - - - - - - -

240x240 0.89 0.98 0.78 0.87 0.76

1 0.84 0.91 0.51 0.65 0.49

0.67

0.66

test set 1

2 0.62 0.85 0.69 0.76 0.61 0.66

3 0.61 0.71 0.52 0.60 0.43 test set 2

496x496 0.95 0.96 0.86 0.90 0.83

1 0.87 0.92 0.53 0.67 0.50

0.64

0.72

2 0.72 0.83 0.56 0.67 0.50 test set 3

3 0.75 0.70 0.49 0.58 0.41 0.60

4 0.63 0.34 0.00 0.01 0.01

3808 128x128 0.79 0.99 0.70 0.82 0.70

1 0.78 0.93 0.52 0.66 0.50

0.67

2 0.42 0.93 0.61 0.73 0.58

3 0.46 0.83 0.48 0.61 0.43

Table A 9 Total average F1 score per a test set

Test set no. 1 2 3

Total average F1 score of the test set 0.61 0.70 0.61

