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Abstract 

The focus of this thesis is to develop a classifier of shrub vegetation cover. Shrubs are a key vegetation 

type in dry Mediterranean climates, that is associated with an increased risk of fire. The classifier will be 

further used for sustainable land planning and grazing management for fire prevention. Two main 

objectives are 1.) to design a new dataset from an unmanned aerial vehicle (UAV) imagery using 

ordinary RGB channels and 2.) to develop a method to increase the accuracy of a convolutional neural 

network (CNN) with a U-Net architecture to detect shrubs in a complex heterogeneous forest 

environment within a study farm in Portugal. The tested methods and their feasibility for this particular 

task are data augmentation, tiling, rescaling, dataset balancing and hyperparameter tuning (namely the 

number of filters, dropout rate and batch size). The biggest improvements were recorded with data 

augmentation, tiling and rescaling practices. The developed classification model achieves an average 

F1 score of 0.72 on three separate test sets even though it is trained on a relatively small dataset with 

some degree of inaccurate labels. It takes around four hours to train the model. The major challenges 

identified in this work were precise manual image annotation, small sample size, time and memory limits 

of used tools, and high intra-class and low inter-class variance of the target vegetation class. The main 

contributions of this study are evaluating the performance of the state-of-the-art CNN for mapping fine-

grained land cover patterns from RGB remote sensing data and proposing a method to improve the 

model’s performance.  
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Resumo 

O foco desta tese é desenvolver um classificador da cobertura arbustiva usando imagens obtidas por 

um veículo aéreo não tripulado (UAV). Em climas mediterrânicos, a expansão de biomassa arbustiva 

está frequentemente associada a um maior risco de incêndio. O classificador será usado 

posteriormente para  apoiar o ordenamento e gestão sustentável de paisagens de pastoreio para 

prevenção de incêndios. Os dois objetivos principais são 1.) construir um novo conjunto de dados, a 

partir de imagens de um veículo aéreo não tripulado (UAV) usando canais RGB comuns e 2.) 

desenvolver um método para aumentar a precisão de uma rede neural convolucional (CNN) com uma 

arquitectura U-Ne t para detecção de arbustos num ambiente florestal, com cobertura do solo 

heterogénea e complexa, usando uma área de estudo em Portugal. Os métodos testados e sua 

viabilidade para esta tarefa são aumento de dados, tiling, reescalonamento, ponderação de conjunto 

de dados e ajuste de hiperparâmetros (ou seja, o número de filtros, taxa de dropout e tamanho do lote). 

As maiores melhorias foram registradas com as técnicasde aumento de dados, tiling e 

reescalonamento. O modelo de classificação desenvolvido atinge uma pontuação F1 média de 0,72 em 

três conjuntos de teste separados, embora o conjunto de dados de  treino seja relativamente pequeno 

e contendo alguns rótulos imprecisos. O  treino do modelo dura cerca de quatro horas. Os principais 

desafios identificados neste trabalho foram a anotação manual precisa da imagem, o pequeno tamanho 

da amostra, os limites de tempo e memória das ferramentas utilizadas e a alta variância intra-classe e 

baixa variância inter-classe da vegetação alvo. As principais contribuições deste estudo são a avaliação      

do desempenho do estado-da-arte da CNN para mapear a cobertura do solo em paisagem com uma 

textura fina (“fine-grained”), a partir de dados RGB de detecção remota, e propor um método para 

melhorar o desempenho do modelo. 
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1 Introduction 

1.1 Background and motivation  

Human activities have a tremendous impact on the environment. A dramatic population increase from 

around 1*109 in 1800 to 7.8*109 in 20201 and a society based on consumerism lead to ever growing 

needs and demands of humankind, which exerts unprecedented pressure on Earth systems. Notable 

consequences of Anthropocene-induced climate change have made us recognize our responsibility and 

defects in our structures. Numerous attempts have been made in order to redirect our civilization 

towards a more just and sustainable path. Well known examples are the United Nations’ Sustainable 

Development Goals (SDGs, 2015)2 and the Planetary Boundaries (2009)3, a framework proposed by 

scientists to guide sustainable development within safe environmental limits. Issues addressed in SDG 

2 (Zero hunger) and SDG 12 (Responsible consumption and production) and in Planetary Boundaries 

(mainly Biogeochemical flows, Biosphere integrity loss, and Land-system change) are directly linked to 

our food systems, with the two mentioned boundaries being already far beyond the Zone of high risks 

and the third one approaching it.  

Food production is one of the major contributors to degradation of the environment. This sector accounts 

for approximately 26% (13.598 Gt CO2-eq/yr) of global greenhouse gas emissions (GHG), out of which 

one half (6.93 Gt CO2-eq/yr) comes from crop production and land use, linked to turning natural 

ecosystems such as forests and grasslands, that act as carbon “sinks”, into cropland and pastures, that 

release additional carbon dioxide (CO2)4. There is a tremendous opportunity cost to this as well, since 

insensible land use does not only release additional CO2, but also significantly decreases the amount 

of CO2 potentially sequestered by natural vegetation. Between years 2000 and 2011, there was a global 

increase of 6% (from 3.2 Gt CO2/year to 3.4 Gt CO2/year) in the amount of carbon sequestration loss 

due to agriculture and forestry, with forestry activities like logging contributing the biggest share (30%) 

to the total carbon sequestration loss (Marques et al., 2019). Complete decomposition of individual GHG 

emission contributors within the food production sector can be found in Figure 1. The food production 

sector is also responsible for nitrogen and phosphorus pollution, biodiversity loss, and water and land 

use, eroding the stability of the Earth system.  

After the Kyoto Protocol, a worsening environmental situation had led to creation of yet another famous 

document trying to mitigate climate change in 2015, the Paris Agreement. Its target is to keep the global 

average temperature increase below 2°C by 2100, relative to 1861 – 1880 temperatures. To make this 

goal attainable a carbon budget for Land Use, Land-Use Change, and Forestry (LULUCF) translates to 

an allowance of emitting 5 Gt CO2-eq/yr by 2050 and then transiting into a net carbon sink absorbing 10 

 
1  https://www.worldometers.info/world-population/ 
2  https://sdgs.un.org/goals  
3  https://www.stockholmresilience.org/research/planetary-boundaries.html  
4 https://ourworldindata.org/food-ghg-emissions#:~:text=They%20are%20the%20direct%20emissions, 
for%2024%25%20of%20food%20emissions. 

https://www.worldometers.info/world-population/
https://sdgs.un.org/goals
https://www.stockholmresilience.org/research/planetary-boundaries.html
https://ourworldindata.org/food-ghg-emissions#:~:text=They%20are%20the%20direct%20emissions,for%2024%25%20of%20food%20emissions.
https://ourworldindata.org/food-ghg-emissions#:~:text=They%20are%20the%20direct%20emissions,for%2024%25%20of%20food%20emissions.
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Gt CO2-eq/yr by 2100 (Willett et al., 2019). Agricultural systems can become carbon sinks, but some 

emissions-producing biological processes that are intrinsic to agriculture, such as ruminant livestock’s 

digestion producing methane (CH4) or soil microbes emitting nitrous oxide (N2O), imply that agricultural 

GHG emissions cannot be eliminated entirely, which makes this task even more challenging. That’s why 

both bottom-up and top-down approaches are needed. While the former stands on a consumption side 

and is a responsibility of every individual, the latter requires structural change of the food production 

systems. Proper sustainable management practices that are aligned with Earth system processes 

urgently need to be developed and adapted on a large scale. Better harnessing of ecosystem services 

such as pest control, pollination, water regulation, and nutrient cycling, will lead to higher productivity 

and resilience, and at the same time will reduce harmful environmental impacts of this sector. Cattle 

farming, which is a big part of our current food production industry, is not only the biggest contributor of 

GHG emissions in the food production sector (31% along with fisheries, see Figure 1), but has also the 

highest impact on biodiversity, that contributed to approximately 28% of total impending bird species 

extinctions in 2011 (Marques et al., 2019).  

 

Figure 1 Global greenhouse gas emissions from food production (Source: Our World in Data, 2019) 

 

However, traditional livestock systems also play a role in biodiversity conservation, climate adaptation, 

and socioecological resilience at regional and local scales (Proença & Teixeira, 2019).Ecological 

processes, such as nutrient cycling, soil fertilization, maintenance of genetic diversity and regulation of 

vegetation growth, once supported by wild large herbivores (Ripple et al., 2015), are now sustained by 

free-range livestock in areas where wild large herbivores are scarce or no longer present. However, 

strong socio-economic drivers stimulate rural-urban migration, leading to an extensive abandonment of 
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agricultural land. The absence of large herbivores and the withdrawal from human activities increase 

fuel loads and promotes homogenization of vegetation in the affected areas. Shrub growth, after the 

cessation of land use, increases the susceptibility of the landscape to fires, and is further s enhanced 

by wildfires due to its resprouting ability (Rey Benayas, 2007). This can establish a positive feedback 

loop, leading to vast declines in biodiversity and change in natural fire dynamics, especially dangerous 

in Mediterranean Basin, which has already high fire intensities and frequencies due to its dry climate 

and impacts of global warming in recent decades. Only in 2017, wildfires that destroyed areas in the 

European Natura 2000 network, incurred damage of 10 billion euros (Kinaneva et al., 2019). That is why 

active re-introduction of herbivores into fire prone regions could serve as an environmentally sustainable 

and time and cost-effective method for wildfire prevention. Prescribed (or targeted) grazing is a 

silvopastoral practice that promotes heterogeneous landscapes, controls shrub encroachment and is 

officially considered as a wildfire prevention tool (Lovreglio et al., 2014). 

However, such interventions require thorough land planning, preventive management and regular 

monitoring for which a detailed land cover mapping is essential. Remote sensing is a primary source of 

data for vegetation mapping and thanks to continual developments in geo-information technologies this 

field is gradually becoming more universal. Limitations that satellite-based systems face, such as 

insufficient spatial, spectral and temporal resolutions, cloud cover or high cost of data acquisition, are 

resolved with the emergence of a new remote sensing aerial platform – unmanned aerial vehicles 

(UAVs). UAVs have very high spatial resolutions thanks to their low speed and flight altitude, they are 

cheaper, more flexible in obtaining data from target areas that are often difficult to reach, they minimize 

disturbances of inspected areas and provide real-time monitoring (Pérez-Rodríguez et al., 2020). 

Acquired data is often used in combination with Artificial Neural Networks (ANNs), that have the capacity 

to speed up evaluation process of the input information even over large datasets. That is why these 

methods are becoming a fundamental tool in numerous fields from wildlife conservation and 

management and various agricultural applications to fire detection.  

 

1.2 Case study: Quinta da França 

This thesis uses a case study farm, Quinta da França, that integrates agricultural and forest land uses. 

The farm’s management is guided by sustainability principles. The farm is managed by Terraprima 

Agrícola. Terraprima is a business group formed by Terraprima - Serviços Ambientais (Environmental 

Services) and Terraprima - Sociedade Agrícola (Agricultural Society), promoting environmental services 

provided by agroforestry activities. Terraprima Ambiental is a spin-off of the Instituto Superior Técnico, 

dedicated to the design and implementation of integrated systems to compensate for environmental 

impacts resulting from human activities. They are involved in the management of projects for 

remuneration of farmers delivering environmental services through good soil management practices. 

Terraprima Agrícola was established in 1994 and since then has been managing a farm Quinta da 

França, whose sustainable forest management is a part of Terraprima’s general long-term endeavors to 

demonstrate sustainable management of rural areas, while maximizing economic profitability, 
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ecosystem services and benefits for collaborators of projects related to the environment and 

sustainability5.  

On the farmland, Quinta da França exercises integrated production, which is an agricultural system for 

the food production that favors protection of the environment and the consumer, producing high quality 

products with rational management of natural resources, contributing to development of sustainable 

agriculture6. It maximizes synergies between forest production and agricultural production, that 

enhances multiple environmental services. A biodiverse pastures system, invented by Portuguese 

researcher Davis Crespo in the 70’s, is implemented in non-forest areas of the farm. It mixes different 

plant species, which increases organic matter in the soil and better retains CO2. Besides that, CO2 is 

also captured by the forest area, thanks to what Quinta da França successfully demonstrated that the 

provision of environmental services (in this case natural agroforestry carbon sink) can be a competitive 

agricultural market product, alongside conventional food production, when in a big emission offset 

program in collaboration with EDP that ran from 2006 to 2012, its forests were used to sequester 7000 

tons of CO2/yr , aspiring to achieve the goals set by Portugal under the Kyoto Protocol7. Agricultural 

activities of the farm are a complement to raising livestock, which is the main part of the portfolio. 

Innovative management techniques such as monitoring of the movement, production and reproduction 

of the animals are implemented. The stress is put on animals’ welfare and the animal feed is heavily 

based on grazing, with little supplementation of compound feed (less than 4% of the total feed) (Simões, 

2019).  

The forest area includes a semi-natural oak forest. Two big fire events on the farm’s site, one in 80’s 

and the other in 1996, wiped out around 200 ha of the original oak forest, that has been since then 

regenerating mostly through natural processes. The management of the forest is focused on the 

reduction of fire risk, increase of carbon sequestration, and biodiversity conservation. Vegetation cover 

and level of development is heterogenous, from areas with an already developed tree cover to open 

areas dominated by shrubs. Because the forest is relatively young (25-40 years after fires), young trees 

are dominant and often accompanied by dense understory, which increases their vulnerability to fire 

spread and requires management measures to reduce that risk, namely the regular removal of shrub 

cover. The use of livestock for biomass regulation is now being implemented as a part of an ongoing 

project by the SILVPAST Operational Group8, which is aimed at the sustainable management and 

restoration of the oak forest. Grazing management, enhanced by monitoring of animals’ real-time 

location with GPS collars, is expected to contribute to better soil fertilization, through nutrient inputs and 

recycling, further helping with soil restoration and CO2 retention. Besides that, targeted grazing could 

help to regulate the vegetation structure, open trails, trample down shrubs and consequently reduce the 

risk of fire. The potential impact of the presence of animals is now being investigated also within the 

forest site. A possibility to install biodiverse pastures in forest clearings, in order to maintain open 

 
5 https://www.terraprima.pt/en/sobre-nos/ 
6 https://dre.pt/web/guest/pesquisa/-/search/259760/details/normal?q=DecretoLei+n%C2%BA%2037% 
2F2013 
7 https://www.terraprima.pt/en/projecto/13 
8 https://www.terraprima.pt/pt/projecto/23  

https://www.terraprima.pt/en/sobre-nos/
https://dre.pt/web/guest/pesquisa/-/search/259760/details/normal?q=DecretoLei+n%C2%BA%2037%2F2013
https://dre.pt/web/guest/pesquisa/-/search/259760/details/normal?q=DecretoLei+n%C2%BA%2037%2F2013
https://www.terraprima.pt/en/projecto/13
https://www.terraprima.pt/pt/projecto/23
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(firebreak) areas through grazing (by both, wild herbivores and cattle), has been brought up but has not 

yet been implemented. 

Furthermore, the Forest Fire Protection Program and Fuel Management is an important part of the 

Quinta da França’s agenda. Along with the periodic shrub control, the other important interventions are 

a good road network and strategic distribution of low fuel content plots (e.g. fuel management strips, 

agricultural plots or rocky pastures and outcrops). That is why grazing management and land planning, 

such as implementing forage spaces for cattle in the forest area, in conjunction with the forest's fire 

protection structure is one of the exploration objectives for the fuel management, that has a potential to 

reduce the costs of vegetation control and fire prevention (Terraprima -Sociedade Agrícola Lda., 2012). 

 

1.3 Challenges  

To implement grazing and vegetation management in the most efficient way, regularly updated land 

cover maps are necessary. Mapping the vegetation cover is, however, a challenging task, especially so 

in case of shrubs. Shrubs, or bushes, are a very broad and heterogeneous group of perennial woody 

plants. They come in various shapes and sizes and form complex clusters of individuals, which makes 

it difficult to map and monitor their growth. Moreover, unless they clearly stand out from their 

environment, such as in a desert (Guirado et al., 2017), they are difficult to delimit from the surroundings 

(Ayhan & Kwan, 2020; Hellesen & Matikainen, 2013). This becomes especially an issue in an intricate 

diverse forest environment containing a lot of mixed classes and unclear boundaries among them. Big 

intra-class variance and at the same time low inter-class overlapping of shrubs’ spectral signatures make 

the detection harder even for machine learning models and often lead to misclassification of vegetation 

types. The research on land cover mapping of complex ecosystems containing mixed vegetation classes 

is scarce, which leads to an absence of labelled datasets in this domain and thus the need to create 

them for a specific task by oneself. Due to the features of shrub vegetation and of the land cover 

patterns, this task is a time-consuming process, but also very strenuous in terms of visual recognition 

from remotely sensed imagery. On the top of that, depending on the time and cost constraints, it may 

lead to an insufficient amount of labelled data and thus the need to artificially increase their volume by 

heavy data augmentation. 

 

1.4 Objectives 

The aim of this thesis is to develop a method for high resolution mapping of land cover in a forest area 

with heterogenous land cover composition, with a focus on fire prone shrub vegetation. A classifier of 

the target vegetation type (i.e. shrubs) in the areas susceptible to fire will be created based on exemplary 

data from UAV imagery, that can recognize the corresponding patterns in new images. Maps of 

vegetation cover will then serve as a foundation for better informed landscape planning and grazing 
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management and for research of innovative ways of integrating livestock production, biodiversity 

conservation and fire prevention in fire prone landscapes in the Mediterranean regions.  

The main objectives and contributions of this work are:   

I. Classification of fire-prone vegetation type (shrubs) from natural color UAV images – creating 

manually labeled dataset for training, validation and testing, using semantic segmentation; 

II. Using supervised learning approach to train a CNN (U-net) to automatically detect the key 

vegetation type in new images; 

III. Developing a method to increase the detection accuracy of shrubs in the specific type of 

ecosystem; 

IV. Evaluating the feasibility and performance of the detection of an irregular shrub cover in a 

complex heterogeneous landscape.    

 

1.5 Structure of the thesis 

This work is organized in seven sections as follows: Section 1 consists of a general introduction, 

motivation and presents the case study. A review of main concepts and related works in the field is 

provided in section 2. A description of applied methods, used materials and their development can be 

found in section 3. Section 4 explains further in detail the performed experiments, their purpose, 

underlying assumptions and the used data. Results of the experiments are then presented in section 0 

and discussed more in depth in section 6. Lastly, conclusions and recommendations for a future work 

are presented in section 7.  
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2 Related work 

Technological advancements have significantly improved our understanding of the planet. 

Developments in fields such as remote sensing, computer vision, deep learning, and computer hardware 

bringing low-cost and high-performance GPUs are interrelated and gave rise to new possibilities of 

monitoring the earth surface. The image classification that recognizes the content of aerial images plays 

an important role in applications as diverse as updating maps, improving urban planning, assessment 

of land use changes, environment monitoring and even disaster relief. Rapid developments in remote 

sensing are bringing along ever-growing volumes of unlabelled high-resolution data that are unfeasible 

to process by humans and still pose a challenge for the computer vision to accurately interpretate them. 

Other challenges include small labelled datasets of interest, the character of data and the challenges 

resulting from the used machine learning algorithm (unsupervised and supervised). While unsupervised 

learning methods cluster scenes of interest, with supervised methods the model in trained on specifically 

hand-crafted features that describe the image content locally (Volpi & Tuia, 2017). Supervised 

classification is the state-of-the-art method of land cover mapping (Stoian et al., 2019) and is used in 

this thesis. 

 

2.1 Land cover mapping  

Satellite remote sensing is an effective way of acquiring data for various land cover mapping applications  

(Ahmed & Noman, 2015; Fröhlich et al., 2013; Kussul et al., 2017; Vanjare et al., 2014). Different 

satellites have different qualities, for example Sentinel-1 offers high spatial resolution, while Sentinel-2 

offers high revisit time (Gbodjo et al., 2020). However, satellites are generally continuously improving in 

these terms and some studies (Gbodjo et al., 2020) are also trying to exploit the fusion of multi-source 

data to benefit from the different features and improve the performance. Satellites have an advantage 

of the capacity to map large areas at the same time, but their biggest drawback is resolution that is still 

coarse for some applications, they suffer from cloud cover and they are limited by fixed-timing and costly 

data acquisition (Matese et al., 2015). These issues are resolved by a newer platform of unmanned 

aerial vehicles (UAVs).  

Although originally developed for military purposes, drones, or UAVs, have become an important 

commercial tool for monitoring, revolutionizing the acquisition of fine-grained data thanks to their high 

spatial resolution. It is a low-cost, low-impact solution that is highly flexible and enables data collection 

also in difficult to access areas. This versatile technology can be used for monitoring and analysis of 

small ecosystems to large areas and even a climate change. Therefore, UAVs found their place in 

various fields including ecology and conservation of wildlife (Getzin et al., 2012; Mangewa et al., 2019), 

agriculture and forestry (Csillik et al., 2018), firefighting (Kinaneva et al., 2019) and also disaster zone 

mapping (Kerle et al., 2019). Unlike satellites, UAV-based mapping is often conducted at a local scale 

(Brandt et al., 2020) and faces several other technical challenges. Some of their biggest disadvantages 
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are power limitation, low flight time, small payload, low spectral resolution and sensitivity to atmospheric 

conditions (Mangewa et al., 2019; Paneque-Gálvez et al., 2014). Important are also accurate positions 

and flight heights, that influence the sensor’s accuracy. E.g. flying at higher altitudes makes observations 

more sensitive to the vehicle’s motion and can cause motion blur (Hung et al., 2014). Flight mission 

planning and execution are crucial and the photogrammetric processing of the imagery is, due to 

variations in levels of image overlap and relief displacement, challenging as well. Last but not least 

drones pose serious ethical, security and safety issues.   

The applications of remote sensing  imagery solely in vegetation assessments are very diverse, 

including the monitoring of species after fire events (Pérez-Rodríguez et al., 2020; Sankey et al., 2017) 

and the health condition of vegetation (Baena et al., 2017; Malenovský et al., 2017), mapping of 

ecosystem structure and function (Langford et al., 2019), plant communities (Lopatin et al., 2017) and 

the species at individual level (Cao et al., 2018), assessing biodiversity (Getzin et al., 2012), plant 

diseases (Sladojevic et al., 2016) and many more.  

 

2.2 Bands, indices and data fusion 

When it comes to land cover mapping, utilizing different bands and their combinations, so called indices, 

can be a powerful tool for identification of many classes. Specifically, for the classification of natural land 

cover types useful bands are blue (448-510 nm), that differentiates soil and rock surfaces from 

vegetation; green (518-586 nm), that separates vegetation (such as forest or croplands with standing 

crops) from soil; red (640-670 nm), that senses chlorophyll absorption, discriminates vegetation and soil 

and highlights barren lands; yellow (590-630 nm), that separates vegetation and soil, highlights barren 

lands and separates croplands with standing crops from bare croplands with stubble. Healthy plants 

reflect NIR (772-954nm), thus it is a great band to use in ecology purposes or for estimating the burn 

severity (Pérez-Rodríguez et al., 2020). Information from this band is essential for important indexes like 

normalized difference vegetation index (NDVI), that is widely used to assess the presence and health 

state of a vegetation. SWIR (1195-2365nm) is another band, typically present in satellite imagery, that 

is suitable for distinguishing wet from dry earth and rocks from soils (Iglovikov et al., 2017). 

More bands naturally contain more spectral information, that is why multispectral data are popular in 

land cover classification tasks (Ashapure et al., 2019; Mahdianpari et al., 2018; Pérez-Rodríguez et al., 

2020). However, other types of data offer different qualities, such as high-resolution information present 

in panchromatic images, which makes data fusion an interesting approach to exploit all the useful 

properties of the available data. Gaetano et al. (2018) fuses high-resolution panchromatic and 

multispectral data in their two-branch neural architecture MultiResoLCC, which shows better 

performance on land cover classes such as orchards, meadows, herbaceous savannah and different 

types of crops. Iglovikov et al. (2017) went even further and in their work fused not only panchromatic 

and multispectral images, but also RGB channels and reflectance indices. 
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2.3 Convolutional neural networks 

Advancements in remote sensing and the growing availability of remote sensing data require automated 

solutions to process such large volumes of information. The answer comes in the form of convolutional 

neural networks.  

Convolutional neural networks, CNNs or ConvNets, are state-of-the-art deep learning algorithms 

mimicking biological neural structures developed for image processing and computer vision tasks 

(Kattenborn et al., 2020). While the history of CNNs has started decades ago, they were not practical 

due to their memory requirements and the lack of available training data in the past. Recent 

developments in the computer vision, graphical processor units (GPUs) and growing amounts of data 

that are publicly available resulted in their revival in 2012 (Reina et al., 2020). Their capacity to handle 

growing quantities of earth observation data in an automated way makes them a promising solution in 

many fields. However, their drawback of requiring huge amounts of training data remains and poses 

serious problems especially in cases of image segmentation, where training data acquisition is still 

expensive and scarce. Creating pixel level segmentation masks is complicated, labour and time 

intensive process (Ulmas & Liiv, 2020) and faulty labelling can become a great limiting factor (Rakhlin 

et al., 2018). Even if it is still possible for the model to correctly identify a class even though it was 

labelled incorrectly, as e.g. in the case of (Rakhlin et al., 2018), it will worsen the performance results 

after comparing with the ground truth. Moreover, faulty labelling can become a serious danger in fields 

like medical imagery (Ibtehaz & Rahman, 2020; Litjens et al., 2017) or autonomous driving (Treml et al., 

2016). Some of the ways to overcome the lack of training data are using a weakly supervised learning 

method (Nivaggioli & Randrianarivo, 2019; Wang et al., 2020), transfer learning or a data augmentation 

(Scott et al., 2017), that will be explained more in section 2.9. Other challenges of CNNs include 

complicated tuning process, tendency to overfitting and still high computational requirements.  

CNNs are an end-to-end solution that automatically learns local feature extractors over many examples 

at different spatial scales (Flood et al., 2019), without the need for a feature engineering, improves 

generalization and decreases the number of parameters due to weight sharing (Flood et al., 2019; 

Nogueira et al., 2015). Their ability to encode spectral as well as spatial information makes them superior 

to standard classifiers, such as random forests, that work solely with the spectral information 

(Diakogiannis et al., 2020). CNNs have been successfully applied for image and scene classification, 

segmentation and object detection (Hu et al., 2015; Stoian et al., 2019; P. Zhang et al., 2018; W. Zhang 

et al., 2019).   

A typical CNN consists of a stack of convolutions, activation functions and pooling layers. Convolutions 

are an essential step in which the features are learnt in a hierarchical manner – first layers extract low-

level features, such as edges, lines and corners, while deeper layers learn increasingly more complex 

features such as shapes, structures and entire objects (Nogueira et al., 2015). A non-linearity is 

introduced by an activation function, the most popular one being ReLU (max(0, x)). Pooling layer then 

reduces the dimension of the extracted features, fostering translation invariance (P. Zhang et al., 2018). 

The most popular technique is MaxPooling that acts as a noise suppressant. It selects only dominant 
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features, making the training more robust and decreasing the required computational power. Follows 

the fully connected layers and a classifier layer, softmax, that outputs a vector of scores or probabilities 

for each class. The training of CNNs is generally based on the prediction loss minimization, a loss 

function that measures the difference between the output of the final layer and the ground truth (Guirado 

et al., 2017). The most commonly used performance metric is accuracy, that is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

where TP are true positives, TN true negatives, FP false positives and FN false negatives. 

Another common metric is F1 score, a class-specific measure of segmentation accuracy, suitable for 

unbalanced datasets. It is the geometric mean between precision (user’s accuracy) and recall 

(producer’s accuracy) (Volpi & Tuia, 2017), defined as follows: 

 
𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  

where: 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

and: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

Some of the well-known architectures include LeNet, AlexNet, VGGNet, GoogLeNet, ResNet.  

A common way of boosting the CNNs’ performance in land-cover classification is to combine them with 

the height information (Maltezos et al., 2017) and a digital surface model (DSM) (Längkvist et al., 2016), 

but there is an emerging group of neural networks that focuses specifically on semantic segmentation 

tasks, i.e. pixel level segmentation, which is especially efficient in land-cover classification.  

 

2.4 Segmentation networks 

There are five types of image analysis based on the granularity of understanding the images 9. The most 

coarse-grained is classification (Krizhevsky et al., 2017) of an entire image, outputting a discrete label. 

Follows classification with localization (Sermanet et al., 2014), which outputs a discrete label and a 

localization information usually in form of parameters of a bounding box (B-box). Object detection 

(Girshick, 2015), that unlike the previous case can classify and localize more than one object in an 

image. Semantic segmentation (Q. Zhou et al., 2019), that labels each pixel of an image with a 

corresponding class and the resulting HR map is typically of the same size as the input image – a so 

 
9 https://nanonets.com/blog/semantic-image-segmentation-2020/  

https://nanonets.com/blog/semantic-image-segmentation-2020/
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called dense prediction. Finally, instance segmentation (Graham et al., 2019) is also a pixel level 

classification but unlike the previous type it classifies each instance of a class separately.  

Semantic segmentation is the most interesting one for the land cover classification tasks, able to learn 

also spatial configuration of labels and class-specific structures (Volpi & Tuia, 2017). The detection can 

be either of one specific class (Wen et al., 2017) or multiple classes at the same time (Paisitkriangkrai 

et al., 2016). Two big remaining challenges of the existing methods are intra-class inconsistency and 

inter-class indistinction (Yu et al., 2018). 

One of the main research topics nowadays is how to provide pixel-level high-resolution segmentation. 

Two approaches try to address this problem – 1.) using dilated (atrous) convolution and 2.) connecting 

pooling and un-pooling layers, e.g. DeconvNet, SegNet or U-Net (Li et al., 2018). Among the first 

networks focusing on semantic segmentation was a fully convolutional network (FCN) (Long et al., 

2015). It uses traditional CNN as a feature extractor but replaces the fully connected layers with up-

convolutions, producing spatial feature maps instead of classification scores, that are further up-

sampled to a dense pixel-wise output. Improvement of the FCN is already mentioned SegNet 

(Badrinarayanan et al., 2016), that consists of an encoder part, extracting spatial features, and a decoder 

part, up-sampling the feature maps. Similar to FCN and SegNet is a fully convolutional semantic 

segmentation network U-Net (Ronneberger et al., 2015), that will be discussed further in the next 

section. SegNet and U-Net are able to densely label every pixel at the original resolution of the image 

thanks to their down-sample-up-sample architecture. High-level representations are learnt via 

convolutions and then up-sampled back to the original resolution via deconvolution. These nets are 

computationally efficient and able to learn spatial dependencies among classes. Their drawback is low 

geometric accuracy (Stoian et al., 2019). Other approaches are presented by Audebert et al. (2018) and 

their multi-scale FCN or L.-C. Chen et al. (2017) DeepLab with atrous convolutions for the semantic 

segmentation.  

 

2.5 U-Net 

Building on so called skip connections first introduced by Long et al. (2015), Ronneberger et al. (2015) 

created U-Net (hereinafter the original U-Net), an improved FCN that works with very few images from 

a biomedical field. The combination of low level features with detailed spatial information and high level 

features with semantic information improving segmentation accuracy, makes it a good choice for one-

class segmentation tasks (P. Zhang et al., 2018). The architecture consists of two symmetric paths – 

contracting (left side) and expansive (right side), which give the network its characteristic U-shape. The 

contracting path is a typical CNN architecture – it is a stack of two consecutive convolutions followed by 

rectified linear unit (ReLU) and max pooling operations. This is the down-sampling part of the network, 

where at each step the number of feature maps (kernels) doubles so that the network can learn more 

complex features in the image, however at the cost of losing localization information. By increasing the 

receptive field  information of multiple scales (local and global) is gained and fused together (Zheng et 

al., 2016). The expansive path, on the other hand, applies a sequence of skip connections that, unlike 
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FCN that sums the features (Z. Zhou et al., 2020), concatenate the output of transposed convolutions 

and corresponding feature maps from the contracting path; followed by two consecutive regular 

convolutions with ReLU. This is the up-sampling part of the network, that acts as a compensation for 

the previous max pooling layers. The localization information is reconstructed here and more precise 

output is yielded. A final layer is (1 x 1) convolution that outputs densely labelled segmentation map with 

a size equal to size of the input image. The architecture is depicted in Figure 2. Because max pooling 

uses (2 x 2) sized filters, the input image has to always have an even height and width size. Authors 

used large input tiles and reduced the batch size to a single image. Data augmentation, especially elastic 

deformations that simulates a common tissue variation, was applied to the dataset. The model was used 

with training datasets of 30 (512 x 512) px fully annotated images, and 35 and 20 partially annotated 

images. The intersection over union (IOU) for partially annotated datasets was 92% and 77.5%, 

respectively.  

 

Figure 2 The original U-Net architecture. Blue boxes – multi-channel feature maps, white boxes – copied feature 
maps, the no. of the channels is denoted at the top of the box, height and width at lower left edge of the box, the 
arrows denote different operations. (Source: Ronneberger et al. (2015)) 

 

The encoder-decoder networks are widely used for semantic and instance segmentation (Volpi & Tuia, 

2017; Z. Zhou et al., 2020). There are other examples of feature fusion methods than skip connections, 

include wiring feature maps into a sort of grid in GridNet (Fourure et al., 2017); employing two streams 

in the network – pooling, that carries the context information and residual, that carries full-resolution 

information (Pohlen et al., 2016); and variations of this network (Jiang et al., 2019). U-Net has become 

the state-of-the-art model for biomedical image segmentation tasks, but because of its ability to exploit 
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both texture and spatial structure in high resolution imagery, it is used in other applications like land 

cover classification, too (Garg et al., 2019).   

There are many variations of its architecture. Zhou et al. (2020) presented UNet++, a built-in ensemble 

of U-Nets of varying depths that partially share an encoder and have intertwined decoders. The 

architecture overcomes the problem of unknown optimal depth of the network for different applications 

and restrictive design of skip connections. The feature aggregation in decoders is more flexible and the 

outputs are formed gradually, which helps Unet++ to outperform other compared U-Net architectures. 

Chen et al. (2019) in their Channel-UNet proposed a spatial channel-wise convolution along the channel 

of feature maps to extract the spatial information. By converging this information and feature maps from 

the original U-Net that serves as a backbone, the network effectively mitigates over- and under-

segmentation problem in medical images. Another experiment with network connections are Plus 

connections between the successive Down and Up blocks in a DeepUNet (Li et al., 2018), that avoid 

the convergence on the local optimal solution, improving the performance of very deep networks in 

complex image segmentation tasks. MultiResUNet (Ibtehaz & Rahman, 2020) better handles medical 

images with noises, perturbations or lack of clear boundaries and ResUNet-a (Diakogiannis et al., 2020) 

enhances the understanding capability of the network by including pyramid scene parsing pooling, 

residual connections, atrous convolutions and multi-tasking inference, similarly to ASPP-Unet (P. Zhang 

et al., 2018), that learns contextual information at multiple scales using Atrous Spatial Pyramid Pooling 

technique. The newest and most exciting modification is nnU-Net (Isensee et al., 2020), a network that 

automatically configures itself, including pre-processing, network architecture, training and post-

processing for any new task. 

 

2.6 Shrub cover mapping 

The research on how state-of-the-art classification tools perform in complex land cover mapping tasks 

is generally scarce (Mahdianpari et al., 2018). Shrubs class is a very general and heterogeneous group 

of vegetation with individuals of variable shapes, sizes, and distribution patterns, forming irregular and 

complex clusters of individuals (Guirado et al., 2017). High intra-class and low inter-class variance is a 

challenge causing difficulties to distinguish them from their surroundings (Hung et al., 2014) or other 

vegetation classes. Mahdianpari et al. (2018) used multispectral data, containing more complementary 

information, as a way to alleviate the problem of classification of spectrally similar vegetation types. 

They also found InceptionResNetV2 as the most efficient state-of-the-art convnet (compared to 

DenseNet121, InceptionV3, VGG16, VGG19, Xception and ResNet50) for classifying complex 

multispectral remote sensing wetlands scenes, when it reached an F1 score of 93%. In their pursuit of 

maximizing the distinction between the target vegetation type (weeds) and the surroundings, Hung et 

al. (2014)  proposed to consider phenological stage highlighting the differences in the vegetation 

appearance as the most promising approach, but also performing the survey at lower flight altitudes 

(below 100m (Ashapure et al., 2019)) or using higher resolution sensor to obtain more detail. 
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A study with similar objective to this work – shrubs detection is (Guirado et al., 2017). Objects of interest 

are Ziziphus lotus shrubs, however, it is surrounded by bare soil with sparse vegetation unlike shrubs in 

my case, that are located irregularly in a complex heterogeneous landscape. After combining 

GoogleLeNet with data augmentation, transfer learning (fine tuning) and pre-processing, F1 score of 

97% was achieved. Pre-processing techniques improving the detection performance the most were 

background elimination and long-edge detection, and only random flipping, scaling, cropping and 

brightness were used for data augmentation.   

 

2.7 Hyperparameters  

Hyperparameters are variables which determine the structure of the network and how is it trained. 

Among the most commonly tuned hyperparameters related to network structure are number of hidden 

layers and units (or neurons), dropout and activation function. Adding layers between the input and 

output layer and increasing the number of units can prevent underfitting and generally improve the 

performance, however, deeper neural networks might become more difficult to train (Bengio, 2012). 

Garg et al. (2019) used 19 padded 5x5 convolutional layers in their mUnet and outperformed state-of-

the-art U-Net and fully convolutional neural network (FCN) in a land-use-land-cover (LULC) 

classification task. P. Zhang et al. (2018) found using 64 initial feature maps and 11 layers as optimal 

for the overall accuracy, regardless of the input image. Dropout is a regularization technique that 

randomly ‘drops out’ a given percentage of neurons to avoid overfitting. Co-adaptations among neurons 

are reduced and each neuron is made to learn more robust feature extractors (F. Zhang et al., 2015).  

Generally, the values are between 20-50%10, lower dropout rates can have too little impact, while too 

high ones can cause an inefficient learning. Activation function introduces non-linearity into learning. 

Fast rectifier activation function (ReLU) is the most popular choice for hidden layers, while sigmoid is 

commonly used in the output layer of binary and softmax of multi-class predictions. Optimizers belong 

to this category of hyperparameters, too. Well-known Stochastic Gradient Descent (SDG) has a 

downside of a need for a good learning rate tuning, which is solved with optimizers such as Adam, that 

have adaptive learning rate. Adam is also computationally efficient, not memory-demanding and can 

therefore handle well large data or a lot of parameters (Kingma & Ba, 2017). Data preprocessing, that 

is further addressed in the next section, can be also viewed as a model hyperparameter. 

Learning rate, number of epochs or batch size are only some examples relating to the training. The 

speed of updating network’s parameters is defined by learning rate. Large values lead to fast learning 

but risk to miss the minimum of the loss function (‘Exploding gradient’), while too low values slow down 

the training and may also fail to converge (‘Vanishing Gradient’)11. Generally, 0.01 (Bengio, 2012) is a 

good starting point, but decaying learning rate is the optimal solution. The number of epochs determines 

 
10 https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hyperparameters- 
in-a-deep-neural-network-d0604917584a 
11 https://towardsdatascience.com/neural-networks-parameters-hyperparameters-and-optimization-
strategies-3f0842fac0a5 

https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hyperparameters-in-
https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hyperparameters-in-
https://towardsdatascience.com/neural-networks-parameters-hyperparameters-and-optimization-strategies-3f0842fac0a5
https://towardsdatascience.com/neural-networks-parameters-hyperparameters-and-optimization-strategies-3f0842fac0a5
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how many times the network sees the whole training dataset during learning. Decreasing validation 

accuracy despite increasing training accuracy is a sign of overfitting and the training should be stopped. 

This is another popular hyperparameter to tune but also brings along the dilemma of an increased 

performance at the cost of an unevenly increased training time. Hussain et al. (2019) yielded 5.5% 

higher accuracy with increasing the number of epochs fourfold, which came at the expense of a longer 

training time. Batch size is the number of samples in subsets of training data that affects the speed of 

learning. Larger batch sizes tend to slow down the convergence and generalize worse on test data, 

creating a so-called ‘generalization gap’. Smaller batch sizes generally perform better, with 32 as a good 

default value (Keskar et al., 2017; Masters & Luschi, 2018). While some (Bengio, 2012) argue that it 

can be optimized independently of other hyperparameters, others (Goyal et al., n.d.) suggest that 

treating learning rate as a function of batch size can minimize the generalization gap and speed-up the 

training. Nevertheless, using yet another optimization method – the batch normalization (Ioffe & 

Szegedy, 2015), one can use bigger learning rates and batch sizes, while improving the performance 

and speeding-up the training (Iglovikov et al., 2017; Ramanath et al., 2019; Volpi & Tuia, 2017). 

Hyperparameter optimization is the last step before getting the final results on a test data, that aims to 

improve the performance of a model and is restricted by time, money and computational power. The 

configuration of model hyperparameters is generally problem specific and can’t be estimated from data, 

thus is often set arbitrarily by the user before starting the training. The most widely used automatized 

strategies for finding the best configuration of hyperparameters is grid search and random search. The 

former evaluates every possible configuration of parameters specified in a grid, which makes it slow, 

computationally expensive and unable to work with many hyperparameters. On the other hand, the latter 

replaces the grid with random sampling, which is a more efficient approach able to work with many 

hyperparameters and explore wider space in less time. However, both share the disadvantage of each 

guess being independent from the previous ones12. This can be better handled with manual search that 

can better exploit the previous experience but can get expensive and tedious. Lastly, the Bayesian 

optimization aims to solve all of the above-mentioned problems by predicting the target metrics from 

hyperparameter configuration.   

 

2.8 Pre-processing 

Due to memory limitations of hardware, it is a common practice to tile or down-sample large images 

before they are fed into the model. However, these methods can cause unpredictable errors in the 

model’s output. 

Tiling presents additional hyperparameters (such as tile size and the amount of overlap) and can 

degrade the classification results, especially in the border regions (Reina et al., 2020). U-Net, for 

instance, can perform poorly near borders of images because of a bias resulting from padded 

convolution (Stoian et al., 2019). Therefore, introducing a certain amount of tile overlap can help to 

 
12 https://www.datacamp.com/community/tutorials/parameter-optimization-machine-learning-models 
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overcome this issue (Rakhlin et al., 2018). Hung et al. (2014) reported improved classification accuracy 

with the tile size that could fully capture individual plants from the target class but warned from using too 

big tiles that could introduce noise from neighbouring plants. Also according to Bao (2019) the receptive 

field depends on the size of the object of segmentation. He achieved higher segmentation accuracy and 

better localization by employing two different sizes of receptive fields in his dual-branch FCNN – small 

for segmentation of small objects and large for segmentation of bigger objects and better localization. 

Conversely, for mapping the vegetation extent Flood et al. (2019) argue that the tile size should be 

bigger than the objects and should cover groups of the individuals from the target vegetation class, 

rather than individuals. The resolution of the imagery is an important factor to be considered when 

deciding the objective of the task. Because the spatial structure of canopies is related to size of the 

individual relative to the pixel size (Fricker et al., 2019), clusters of similar pixels will represent individual 

trees in HR imagery, while they will be able to represent only entire stands of trees with a coarser spatial 

resolution. Another important thing to look for is the amount of context. Larger tiles perform better 

because they capture more context of the image and the color and texture features are more consistent 

(Hung et al., 2014). P. Zhang et al. (2018) in their binary classification used only images containing both 

classes to enhance the efficiency of the training. The success of vegetation detection lies in the 

comparison of differences between the textural and structural characteristic of the target class and the 

surrounding vegetation (Kattenborn et al., 2020). This means that even RGB imagery that has low 

spectral but high spatial resolution can be very useful in vegetation mapping, which is great news for 

low-cost UAV datasets. Even better performance can be presumed by combining high spatial resolution 

sensors with high spectral resolution (multi- or hyperspectral data). P. Zhang et al. (2018) demonstrated 

that 8-band datasets achieved the highest overall accuracies, decreasing for 4-band, CIR and finally 

RGB data.  

Multiscale saliency of a patch affects the classification performance (Kim et al., 2011; F. Zhang et al., 

2015) and could be also considered as a hyperparameter. Down-sampling, reducing the dimensionality 

of an image, enables faster processing of data or capturing a broader context, which maintains large 

structural elements but loses some fine detail. Therefore, the suitability of this approach appears to be 

highly case-specific. While for some tasks filtering out only the most pronounced information can boost 

the performance (Müllerová et al., 2017; Rakhlin et al., 2018), for others where the information contained 

within the object is as important as the context it might not be as desirable (Reina et al., 2020; Shaban 

et al., 2019; W. Zhang et al., 2019). The information loss and object distortion cause by resizing of large 

tiles can be undesirable also in case of using pre-trained networks (Zheng et al., 2016). However, it 

seems that the target class is not the only factor that affects rescaling, but also the season (in vegetation 

classification), pixel resolution, type, depth and some parameters of the network and last but not least 

the objective of the study and its respective tradeoffs. In a study of a giant hogweed (Heracleum 

mantegazzianum) (Müllerová et al., 2017), a monocarpic perennial herbaceous flowering plant, 

resampling helped to resolve the problem of the noise springing from very fine spatial resolution of UAV 

images, that was overwhelming the relevant spatial patterns and consequently hampering the 

classification accuracy. However, this approach was useful only in autumn and in slightly blurred images. 

In the summer images the success rate dropped, likely because merging pixels into mixed pixels during 
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this phenological stage created more confusion in vegetation recognition. Rakhlin et al. (2018) found 

scale 1:2 as a perfect tradeoff between image resolution, receptive fields and depth of the model and 

Reina et al. (2020) encountered a convergence of F1 score at this scale, however, at the same time the 

latter study and others (W. Zhang et al., 2019; Zheng et al., 2016) also got the best results with almost 

no re-scaling.  

Balancing a dataset can be considered as another pre-processing method aiming to improve the results. 

It means obtaining a more even distribution of classes in the dataset. This can be achieved by under-

sampling the majority class or over-sampling the minority class. Other techniques include interpolating 

minority-class data points or penalizing misclassification of the minority class. While the under-sampling 

method reduces the number of samples in the abundant class and can lead to a loss of a critical 

information, over-sampling grows the number of samples in the minority class and can lead to overfitting 

13. Which approach to choose depends on the problem and amount of available data. Wei & Jr (2013) 

achieved the highest accuracy by using balanced training dataset (50% of the dataset was the target 

class) with any proportions of the target class in the test data. Others (F. Zhang et al., 2015) simply 

exclude the patches that don’t contain the target class entirely from the dataset. 

 

2.9 Data augmentation and transfer learning  

One of the main problems in the remote sensing domain, the lack of labelled data for model training, 

can be overcome by data augmentation or transfer learning (Scott et al., 2017).   

Data augmentation is a technique of artificially increasing the size of a dataset by applying label-

preserving random transformations to the original images. The model has access to a bigger volume of 

labelled data to learn from, potential correlation between patches in the batch are reduced, and the 

model sees more diverse aspects of the data, allowing it to encode the desired invariance. As a result, 

more robust feature descriptors (F. Zhang et al., 2015) are created and the generalization ability is 

improved (Volpi & Tuia, 2017). New images can be generated using many different strategies, such as 

rotating, flipping, zooming or cropping. However, the choice should be relevant and meaningful with 

regards to the type of the problem. For example, the original U-Net (Ronneberger et al., 2015) uses 

elastic deformations on the available biomedical data, because it is the most common variation in tissue 

and it efficiently simulates realistic deformations. For multi-class labelling tasks, e.g. land cover 

classification, contextual information at multiple scales is important since features of different land cover 

types and ground objects usually exist at various scales (P. Zhang et al., 2018). Diakogiannis et al. 

(2020) apply rotations and zooming in/out (a sort of re-scaling, that was already discussed in the 

previous sections) on the dataset containing mostly urban land cover classes, Kattenborn et al. (2020) 

use rotating, shearing (0-0.2 radians), shifting (0–15%) and horizontal flipping in the assessment of plant 

species and (Li et al., 2018) advocate primarily for shift, rotation and scale variations. Similarly as in 

case of tiling, data augmentation also can affect predictions in border regions. Reina et al. (2020) 

 
13 https://medium.com/analytics-vidhya/what-is-balance-and-imbalance-dataset-89e8d7f46bc5 
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reported that the results of a flipped image differed from the ones in the original image. On the other 

hand, Long et al. (2015) argued that random mirroring and “jittering” the images by translating them up 

to 32 px did not have a noticeable impact on the performance. The usefulness and type of data 

augmentation may, therefore, depend on the problem domain. Augmentation can be applied offline, in 

a pre-processing stage, or online, so called real-time augmentation. The former is usually used with 

small datasets and the augmented images become a part of the training set, so the model sees them 

multiple times. The latter is applied to big datasets and does not include saving the images on disk, the 

model sees different images at each epoch and therefore generalizes better14.  

Transfer learning is a supervised learning method, that uses weights from a network that was already 

trained and fine-tuned, usually on a bigger dataset with samples similar to the ones we want to apply it 

to and offers a promising alternative to feature design. It can be implemented using pre-trained model 

as is, using it as a feature extractor or fine-tuning it15. As compared to a network trained from scratch 

that starts with randomly initialized weights, employing transfer learning cuts down costs and training 

time, while achieving high performance even with small sized datasets (Hussain et al., 2019; W. Zhang 

et al., 2019). Hussain et al. (2019) observed almost double accuracy using the pre-trained model even 

on image categories different from the ones in the dataset that the model was originally trained on.  

Transfer learning has been enabled with the advent of publicly available large datasets, among the most 

famous ones ImageNet16, CIFAR17 or MNIST18 that gave rise to pre-trained models, such as VGG-16, 

Inception-v3 and ResNet50, amidst the most popular ones for the image classification task15. In the 

specific case of U-Net, one of these networks is simply used as the encoder. One such example is 

TernausNet (Iglovikov & Shvets, 2018), that uses VGG11 network pre-trained on ImageNet as an 

encoder, while in other works (Ulmas & Liiv, 2020) a pre-trained ResNet50 is used. The latter 

experienced the worst F1 scores of scrub and herbaceous vegetation (0.16), coniferous forest (0.32) 

and bare rocks (0.41) classes, denoting that these land cover types may be a challenge for pixel level 

segmentation. High resolution aerial images can bring along big intra-class and small inter-class 

variances in pixel values, which can cause difficulties in discrimination of some land cover classes 

(Diakogiannis et al., 2020; Mahdianpari et al., 2018). Transfer learning is also helpful in applications 

where it is problematic to collect a large volume of training data.  

 

 

 
14 https://towardsdatascience.com/data-augmentation-techniques-in-python-f216ef5eed69 
15 https://towardsdatascience.com/beginners-guide-to-transfer-learning-on-google-colab- 
92bb97122801 
16 http://www.image-net.org/ 
17 https://www.cs.toronto.edu/~kriz/cifar.html 
18 http://yann.lecun.com/exdb/mnist/ 

https://towardsdatascience.com/beginners-guide-to-transfer-learning-on-google-colab-92bb9712280
https://towardsdatascience.com/beginners-guide-to-transfer-learning-on-google-colab-92bb9712280
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3 Materials and methods 

This section describes materials and methods used in this thesis. The work consists of four main parts:  

• labelling the data,  

• creating the dataset, 

• training an ML model for an automatic classification and 

• developing a method to improve its performance on my data.    

First three sub-sections describe the geographical area under study where photos were taken, the data 

themselves and the initial data visualization with QGIS.  

The following sub-section describes the tools and methods used for data labelling and creating the main 

dataset and its sub-datasets and explains the rationale behind these processes.  

The last part details the U-Net and justifies why I used this particular CNN.   

All the methods used to improve the performance are described in the section 4. 

 

3.1 Study area 

Quinta da França is a 500 ha property located near Covilhã in Castelo Branco District, surrounded by 

the Zêzere River and Ribeira de Caria stream. The local climate is mild and generally warm, with an 

average annual temperature of 13.5°C and precipitation around 1082 mm19. The coldest month, 

January, with an average temperature of 6.2°C, is also the wettest (162 mm of rainfall). On the other 

hand, the warmest months, July and August (average temperature of 21.9°C and 22.2°C, respectively), 

are the driest ones of the year (10 mm of rainfall) and are therefore critical regarding the risk of forest 

fires.  

As it can be seen in Figure 3, the farm is divided into three main zones:  

1. Quinta de Cima: Northwest area with beef production and permanent irrigated grazing pastures. 

Corn (for silage and grain) and hay fodder are produced here.  

2. Quinta de Baixo: South area with another cattle production and all sheep production. In this 

area are permanent irrigated pastures, rainfed, natural pastures and improved natural pastures.  

3. Serra: Northeast area with oak forest.  

 
19 https://en.climate-data.org/europe/portugal/covilha/covilha-6944/ 

https://en.climate-data.org/europe/portugal/covilha/covilha-6944/
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Figure 3 Left: Location of Quinta da França in Portugal (Source: QGIS). Right: The zone of the oak forest Serra 
(red) (Source: Terraprima -Sociedade Agrícola Lda., 2012) 

 

The farm’s sheep and bovine animals graze at Quinta de Cima and Quinta de Baixo (Simões, 2019). 

The forest in Serra, previously closed for animals, was divided by a fence in January 2018 into two 

parcels of about 100 ha each: a southern grazing parcel, to test the effect of cattle presence on 

vegetation structure (grazing, trampling, etc.), and a northern parcel without grazing (wild herbivores are 

present but in low density)20. In June 2018 the grazing parcel was open to a group of about 60 cows. 

The animals maintain permanent access to the site since then. However, the use of the forest space by 

cattle tends to increase in late spring-early summer (May-July), possibly related to the simultaneous 

availability of resting areas, with shadows and green forage. Mechanized removal of shrubs along main 

tracks (dirt roads) is maintained at both parcels. 

The dominant plant species in the forest site is pyrenean oak (Quercus pyrenaica), that is naturally 

occurring in the region. Maritime pine (Pinus pinaster) plantation area is also an important component 

of the forest cover. In the riparian areas, black alder (Alnus glutinosa) and ash (Fraxinus excelsior) are 

the key species. In the shrub stratum, besides the dominant brooms species (Cytisus multiflorus and C. 

scoparius), there can be also found hawthorn (Crataegus monogyna), blackberry (Rubus ulmifolius) and 

grey willow (Salix atrocinerea).  

 
20 https://www.terraprima.pt/pt/projecto/23  

https://www.terraprima.pt/pt/projecto/23
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The images were taken in the test area, marked as a red star in Figure 4, which is located within the 

grazing parcel – the area of interest for the study.  

  

Figure 4 Aerial view of Quinta da França (yellow border), oak forest perimeter (red border) and grazing parcel 
(white border). The red star depicts the location of the test data used in this thesis  (Source: GO - SILVPAST - 

Terraprima, n.d.) 

 

3.2  Data description  

The images were acquired by hexacopter with two cameras: VIS GITUP2 camera with RGB filter (370 

– 680 nm) and 170° lens (fish-eye) and NIR Mapir Survey2 NDVI camera (Red: 660 nm, NIR: 850nm), 

with 90° lens. 16MP ((4608 x 3456) px) sensor Sony Exmor IMX206 (Bayer RGB) was used. The flight 

altitude relative to the take-off point was 120m, velocity 5m/s and photos were taken every 5s. The drone 

was assembled by Terraprima. 

Two test sets of images were provided by Terraprima for this thesis: 1) a set of samples of the 

orthomosaic for the test area and 2) a set of original images that compose the orthomosaic. 
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The first set consisted of nine (3361 x 3361) px orthomosaics in TIFF format. The test area was clipped 

from the orthomosaic of the full forest area, which was composed by images captured in several flights 

with an approximate scan area of 20 ha per flight. All nine samples covered an area of approximately 

(200 x 200) m, with spatial resolution 4 cm. The size of the area was defined arbitrarily, large enough to 

include different land cover types and small enough to be fast to process and to test the methods. The 

images in the set were:  

• R and NIR band and NIR composite image taken in July 2019;  

• R and NIR band, NIR composite and RGB image taken in January 2019; 

• NIR and RGB image from July 2016.  

Example of an image taken from both of the mentioned cameras can be seen in Figure 5 below:   

 

Figure 5 Sample RGB image taken with VIS camera (left) and NIR image taken with NDVI camera (right) 

 

Flights took place in different seasons to exploit the differences due to vegetation phenology. Namely, 

to take advantage of the sharp distinction between perennial (green) shrubs and the senescent (yellow) 

herbaceous vegetation in the summer, and to take advantage of the deciduous canopy cover in the 

winter to facilitate spotting shrubs under the deciduous oak trees. Even though the seasonal features 

were not expressed enough in the images to improve the visual interpretation of the data for labelling, 

since the detection accuracy depends on phenological phase of the vegetation that can even partly 

compensate for lower spectral resolution (Müllerová et al., 2017), some of these features, that were not 

readily perceived by the human eye, can still facilitate the ML classification and help to achieve better 

performance. Naturally, high spectral resolution still plays an important role in vegetation mapping, 

especially for less distinct species. Software Agisoft was used for orthorectification. Due to continuous 

technical issues with these images, likely resulting from the overlapping discrepancies in the 

orthomosaic, I abandoned the work with this set and substituted it with the second set. 

The second set was composed of 21 (4608 x 3456) px original TIFF images in RGB, which were 

captured for the same test area during a single flight, that took place in August 2019. Because of the 

small size of the test area and the overlap between consecutive images, the images were highly similar. 

The disadvantages of these images are fisheye and motion blur, which causes distortion and makes the 
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annotation more challenging, especially so in peripheral areas of the images. Later, I obtained two more 

sets of data for final testing: 49 winter images from December 2019 and 45 summer images from August 

2020. 

Unlike hyper- or multispectral datasets used in many vegetation cover classification studies (Fricker et 

al., 2019; Langford et al., 2019; Makantasis et al., 2015; Yue et al., 2015), this thesis uses ordinary RGB 

images. Limited number of spectral channels makes the presented method more convenient for use in 

combination with most aerial imaging systems, including off-the-shelf UAVs, and wider range of data.    

 

3.3 QGIS data visualization  

In the initial phases of the work I used Semi-Automatic Classification Plugin (SCP), a free open source 

QGIS plugin for supervised land cover classification of remote sensing images. The objective was to 

fast and easy visualize and benchmark the classification performance of a working land cover 

classification tool on my data, and to spot classes that may have a higher risk of being misclassified. 

A broad spectrum of image raster management is available in QGIS; application of colour ramps, raster 

calculator, band manipulation and control of various features such as brightness and contrast. All these 

have a potential to ease image interpretation. The SCP was a number one choice for classification 

exercise, because it offers several tools for image pre- and post-processing and it was developed for 

the purposes highly aligned with the ones of this thesis.  

The experiment was conducted on a small scale using five images from the first dataset. I tested RED 

and NIR bands from the NIR images from January and July 2019 and RGB from July 2016 for 

visualization purposes. In total, I created seven classification projects, inspecting different settings with 

two main purposes – clearer data visualization for improved image interpretation and better classification 

results. Four main classes were identified: trees, shrubs, shadows and ground. The ground class is an 

aggregate of bare soil and herbaceous cover, that is mostly senescent in the late summer.  Figure A 1 

and Figure A 2 in the Appendix are examples of using different channel settings for easier recognition of 

certain classes. Table A 1 in the Appendix is a summary of tested tools with the most significant impact 

and the corresponding conclusions.  

Despite achieving more recognizable vegetation and bare soil visualization, I did not manage to produce 

images with clear distinction between shrubs and trees. In general, the objects from different classes 

are easy to confuse and exchange, especially pixels in border parts. The target group – shrubs, due to 

its structure, size and distribution often exhibits features similar to other classes and the information 

contained in the within-class pixels can differ widely, i.e. there are small inter-class and high intra-class 

diversities, which causes a high level of confusion. The main problems with identifying objects from 

individual classes during labelling are summarized in Table 1. 
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Table 1 The main problems with identifying objects from individual classes during labelling 

 Classification 

Trees Shrubs Shadows Rocks Ground 

Reference 
(visual 

classification) 

Trees   

Darker 
border parts  
Possible 
misclassifi-
cation of 
small trees 
for shrubs 

Border parts  
Shadowed 
parts of trees 

- - 

Shrubs 

Lighter 
border parts  
Possible 
misclassifi-
cation of big 
shrubs for 
trees 

  

General 
difficulty to 
distinguish 
dark shrubs 
from 
shadows 

Border parts 
of shrubs 
growing 
around rocks 

Border parts  
Possible 
misclassifi-
cation of 
small shrubs 
for dense 
grass 

Shadows 
Border parts  
Shadowed 
parts of trees 

General 
difficulty to 
distinguish 
shadows 
from dark 
shrubs 

  - - 

Rocks - 

Border parts 
of shrubs 
growing 
around rocks 

-   

Border parts  
Darker rocks  
Small rocks 
difficult to 
spot 

Ground - 

Border parts  
Possible 
misclassifi-
cation of 
dense grass 
for small 
shrubs 

- Border parts    

 

Misinterpreted pixels in training input corrupted the classification results. Photointerpretation errors of 

sample pixels collected randomly for reference raster had further negative impact on accuracy statistics. 

Another big issue in a specific trial was that pixels belonging to rocks’ class, due to the small size and 

scarcity of this class in study images, were entirely absent in generated sample pixels, which resulted 

in 0 pixels classified as rocks in accuracy statistics. Table 2 reveals, that the algorithm had problems 

distinguishing trees from bare soil. From Figure 6 is apparent, that the most problematic are border 

pixels on the irradiated side, as well as some shadowed parts of the trees, that may resemble darker 

areas of the bare soil class. That the classification accuracies depend on whether the area is sunlit or 

shaded was demonstrated by Lopatin et al. (2019), who showed that even when shadows were included 

during model calibration, the predictions in shaded areas of canopies were generally inaccurate and 

lead to misclassification rates between 65% and 100%. The overall accuracy was 47.90% and Kappa 

coefficient 0.34. Full Area Based Error Matrix and visualized classification results are displayed in Table 

2 and Figure 6.  
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Table 2 Area Based Error Matrix (Source: QGIS) 

  Reference: the estimated area proportion of each class  

Classified:  the 
estimated area 
proportion of 

each class 

Trees 
[%] 

Shrubs 
[%] 

Shadows 
[%] 

Rocks 
[%] 

Bare soil 
[%] 

Classification 
raster estimated 

area [m2] 

Total 
[%] 

Trees [%] 12.23 0.00 0.00 0.00 1.53 5501.62 13.75 

Shrubs [%] 0.93 7.46 0.00 0.00 4.66 5222.35 13.06 

Shadows [%] 4.75 1.58 11.09 0.00 0.00 6968.71 17.42 

Rocks [%] 2.91 4.36 5.81 0.00 5.81 7555.49 18.89 

Bare soil [%] 14.49 5.27 0.00 0.00 17.12 14750.63 36.88 

Total [%] 35.30 18.67 16.90 0.00 29.13 39998.79   

Reference raster 
estimated area 

[m2] 
14121.00 7469.00 6759.00 0.00 11650.00 39998.00   

Producer's 
accuracy (PA)21 

[%] 
34.63 39.96 65.61 nan 58.79     

User's accuracy 
(UA)22 [%] 

88.89 57.14 63.64 0.00 46.43     

   

 
21 The producer’s accuracy for each class is calculated as the ratio of correctly classified samples and 
the column total. 
22 The user’s accuracy for each class is calculated as the ratio of correctly classified samples and the 
row total. 
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Figure 6 Visualized classification results. Pixel colour codes: Green – Trees, Red – Shrubs, Black – Shadows, Gray 
– Rocks, Yellow – Bare soil (Visualized in QGIS) 

 

3.4 Machine learning model  

I chose a cloud service Google Colab for training and evaluating the model. The main reason was the 

free access to computing resource. The GPUs available in Colab often include Nvidia K80s, T4s, P4s 

and P100s23. Colab comes with other advantages too, such as ready to use environment with pre-

installed important packages, easy use with Google Drive, or importing datasets from Kaggle24. The 

 
23 https://research.google.com/colaboratory/faq.html 
24 https://www.kaggle.com/ 

https://research.google.com/colaboratory/faq.html
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deep learning methods were implemented using Keras25 (version 2.4.3) with TensorFlow26 backend 

(version 2.3.0). Free version of the service comes at a cost of memory limit of 12GB and time limit of 

12h. This can become a challenge for some experiments, however this thesis also aims to explore the 

set ups with a reasonable tradeoff between working within these limits and still yielding good results. 

This increases the usability and practicality for future students with limited access to advanced virtual 

machines that would like to build upon or further extend this thesis.          

As a basis for the work I used a U-Net model27 created for a Kaggle competition hosted by geoscience 

data company TGS28. The model (hereinafter the TGS U-Net) was originally developed to segment 

regions containing subsurface salt deposits in seismic images. The training dataset, provided by TGS, 

consisted of 4000 seismic grayscale images with dimensions (101 x 101) px and their corresponding 

masks. The TGS U-Net architecture, as in the original U-Net, extracts features with convolutional layers 

in the encoding part and restores the original size of the image in the decoding part. However, unlike 

the original U-Net, TGS U-Net uses the input image with size of (128 x 128 x 3). The size is gradually 

reduced, while the depth is increased (from (128 x 128 x 3) to (8 x 8 x 256)), and then the size is 

gradually increased, while the depth is decreased (from (8 x 8 x 256) to (128 x 128 x 1)).  

The main building block of the TGS U-Net consists of two consecutive 2D convolutional layers with batch 

normalization and ReLU activation function. Batch normalization was stated by the author29 to 

significantly improve the training. The number of filters starts at 16 and is doubled at every convolution 

step. There are four such blocks in the encoder side, each followed by max pooling layer, that halves 

the image dimensions, and a dropout layer. The fifth convolutional block forms a bottleneck with the 

maximum depth and minimum spatial dimensions (Table 9) after which comes the decoder side, with 

four symmetrical deconvolution layers (i.e. transposed convolutions) concatenated with the feature 

maps from the encoder side. After comes a dropout layer and the convolutional block, which helps the 

model to assemble a more precise output. The number of filters is halved at each step, while the 

resolution is doubled. Ultimately, the output of a binary classification is sigmoid, which assigns each 

pixel a probability of belonging to the target class. The model is trained with Adam optimizer with a 

learning rate of 1e-5. Predictions are compared to labels with binary cross entropy loss function. TGS 

U-Net also uses accuracy30 to evaluate the performance. However, this metric has a major disadvantage 

– it doesn’t deal well with class imbalance. (For this reason I also included precision and recall and I 

picked their harmonic mean, the F1 score, as the main indicator for the classification evaluation, since 

it is a more appropriate measure of accuracy for datasets where one class overpowers another.) Keras 

callbacks are used to save the weights if the validation loss improves, and early stopping is implemented 

if the validation loss doesn’t improve for 10 consecutive epochs to prevent overfitting. Learning rate is 

 
25 https://keras.io/ 
26 https://www.tensorflow.org 
27 https://github.com/hlamba28/UNET-TGS 
28 https://www.kaggle.com/c/tgs-salt-identification-challenge 
29 https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47  
30 The overall accuracy = (TP + TN) / (total number of individuals tested) 

https://github.com/hlamba28/UNET-TGS
https://www.kaggle.com/c/tgs-salt-identification-challenge
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
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reduced when the validation loss doesn’t improve for five consecutive epochs. For each pixel the 

probability of belonging to the target class (salt) is calculated, with the threshold of 0.5.  

The dataset is split into training and validation set with ratio 9:1. The validation set is never used in the 

training process, it is only used to evaluate the model's performance. There are 50 epochs with batch 

size of 32. 

The model was trained on P4000 GPU, took less than 20 mins to train and achieved accuracy of 0.92. 

It was slightly overfitting, likely due to small number of training images.  

The detailed architecture of the TGS U-Net can be seen in Figure 7.  

 

 

 

Figure 7 Detailed architecture of the used model. 2@Conv layers – two consecutive Convolution Layers; c1-c9 –  

the output tensors of Convolutional Layers; p1-p4 – the output tensors of Max Pooling Layers, u6-u9 – the output 

tensors of up-sampling (transposed convolutional) layers (Source: https://towardsdatascience.com/understanding-

semantic-segmentation-with-unet-6be4f42d4b47)   

 

https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
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3.5 Description of datasets  

The following subsections describe the development of training data; from the processing of raw images 

and labelling procedure to tiling annotated images along with their corresponding binary masks into final 

sub-datasets used in the experiments.   

 

3.5.1 The development of the main dataset 

This section describes the process of creating and labelling the dataset. Due to input requirements of 

the annotation tool used in this thesis, all 21 RGB images in TIFF format had to be first converted into 

PNG. After that, images were sliced into smaller square-shaped tiles with dimensions (800 x 800) px, 

as depicted in Figure 8, which corresponds to approximately (50 x 50) m patches of land (in case of 

sections of image perpendicular to the drone). The tile size was chosen based on the size of the objects 

of interest and the amount of context, with the main objective to make visual recognition for labelling 

easier. Adjacent tiles have overlap of 39 pixels in horizontal and 136 pixels in vertical direction. The code 

can be found at https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net in the file 

tif_to_png.py. In total, 630 tiles were generated from the original images (30 tiles per image). Out of 

these, only 13 were selected for labelling, due to the time-consuming nature of this process. All 13 tiles 

came from the same image. The selected tiles, as well as the complete list of names of the images and 

the tiles produced from them can be found in Table A 2 in the Appendix. During the selection, I aimed 

for a sample of tiles that would be representative for every part of the original image with different land-

cover configuration and that would contain all 4 classes (shrubs, trees, shadows and rocks) and the 

classes would be represented approximately evenly. This, of course, was not achievable in case of 

rocks, that were very scarce in the images.  

 

Figure 8 Flowchart of slicing original images into tiles and an illustration of tile overlap 

 

For annotation purposes I chose Labelbox31 – a professional platform for labelling and managing the 

training data. There were several reasons for choosing this platform. First of all, tidy interface and an 

 
31 https://labelbox.com/ 

https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net/blob/main/tif_to_png.py
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Overview menu helped to better track my many experimental projects and datasets and to keep them 

well organized. Furthermore, easy adding or deleting assets made manipulation with datasets very 

flexible.  Another reason was the choice of segmentation tools, where in addition to traditional Pen tool 

it was possible to use Superpixel tool, which calculates segment clusters of pixels based on their color 

and a segment cluster size given by the user. This tool was more efficient in annotating objects with 

complex boundaries, such as vegetation. In general, labeling, editing and erasing of the labels was user-

friendly. Another advantage was a built-in function to temporarily manipulate brightness and saturation 

levels of images that was a fast and useful way for better understanding and interpreting of the land 

cover. It was also possible to control the opacity level of created labels, which was very much 

appreciated during re-assessment and validation process with supervisors. Finally, the platform is well-

documented and backed by a professional support. A big handicap of the platform was occasional failure 

to save labeled objects. This was especially dangerous because it was only possible to see during 

revision. Multiple revisions and corrections of the labeled dataset were necessary.    

Land cover classification requires fine-grained understating of an image and its context, meaning that 

dense pixel-level annotation like semantic or instance segmentation is needed. While the former labels 

each pixel with a corresponding class, the latter also classifies each instance of a class separately.  For 

the purposes of this thesis semantic segmentation is sufficient. Table 3 shows pixel share of the four 

classes in the dataset. As mentioned earlier, I exploited segmentations approximated by superpixels to 

facilitate the annotation process, rather than selecting individual pixels. The final product of the process 

was a set of 13 hand-crafted dense pixel-level semantic segmentation maps, where each pixel was 

assigned a label of a corresponding class (Figure 9). Pixel-based classification maps capture well the 

geometry of an image, such as corners and fine elements, but can face issues like noise or an incorrect 

characterization of context dependent classes (Stoian et al., 2019) 

Table 3 Pixel share of classes in the dataset 

Class Shrubs Trees Shadows Rocks 

Pixel count 1 746 204 4 042 008 1 213 720 90 313 

Pixel share 20.99% 48.58% 14.59% 1.09% 

 

The central issue of labelling that could significantly impact the classification results is faulty labelling. 

This could happen in three ways, namely: (1) Incorrect interpretation of vegetation types. Sometimes 

problematic distinguishing between the classes made labelling more challenging. Because the flights 

were not taken at noon one factor helping to differentiate between trees and shrubs was the size of a 

shadow. In general, bigger shadows could be ascribed to trees, smaller to shrubs. This was, however, 

not a universal tool because the area contains also young trees that are smaller and thus cast smaller 

shadow that can be easily swapped with the shadow of bigger shrub species. (2) Incorrect interpretation 

of border regions. As well as the classification plugin described in 3.3 struggled to differentiate between 

classes in these regions, the Superpixel tool used for annotating, that was described earlier in this 

section, also often struggled to correctly adhere to boundaries of complex vegetation thus manual 

selection of pixels was unavoidable. This could lead to assigning an incorrect class to border pixels, 
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since the visual interpretation was also very difficult. (3) Incoherent class labelling. This concerns mainly 

shadows. Because this class also coexists with other classes, e.g. shadows within trees, it was difficult 

to keep consistency while labelling and it could be the case that similar groups of pixels were once 

labelled as trees and once as shadows. Because pixel‐based species classification at high spatial 

resolution is highly affected by within‐canopy variation caused by shadows, Lopatin et al. (2019) decided 

to completely exclude shadows and only classify sunlit areas, which improved the general performance. 

I decided not to do this, because I found it generally tricky to draw a line between what is a shadow 

within trees and what is not anymore, and also because shadows are a part of the canopy structure and 

will be present in most of the datasets, therefore I found it reasonable to include them in the training to 

achieve more comprehensive and robust model. 

 

Figure 9 An example of a labelled tile and its binary masks. Up-left: original image tile, up-right: labeled image tile 
(red - shrubs, orange - trees, yellow - shadows, light yellow - rocks). Bottom (from left): binary mask of shrubs, 
trees, shadows and rocks 

 

When the tiles were labelled, I exported the masks in JSON file. Since only JSON or CSV formats were 

available for the export, I used a code at https://github.com/aggiungi1procione/Thesis---Shrub-

detection-with-U-Net in the file masks_download_from_JSON.py to filter URIs of individual binary masks 

in PNG format from the export file and to download them into separate class folders. The complete 

dataset directory structure was then: 

https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net/blob/main/masks_download_from_JSON.py
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├── test1  

│      ├── test1_tiles  

│      ├── test1_mask_shrubs 

│      ├── test1_mask_trees 

│      ├── test1_mask_shadows 

│      └── test1_mask_rocks 

└──   

 

3.5.2 The development of sub-datasets 

This section explains the development of the final training data for experiments and summarizes the 

process in Figure 10.  

To observe the influence of different amount of captured context, five sub-datasets of different sized 

patches were tiled from the main dataset. The same tiling algorithm as in 3.5.1 was used and can be 

found at https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net in the file 

masks_download_from_JSON.py. The development of the main dataset was used, yielding datasets 

with the following features: 

A. 832 patches (64 per tile) with dimensions (100 x 100) px. Overlap of 0 px in both dimensions. 

These patch dimensions were selected to replicate dimensions of the original data that were 

provided for the TGS challenge. This sub-dataset was intended to serve as a baseline for the 

other experiments.     

B. 208 patches (16 per tile) with dimensions (200 x 200) px. Overlap of 0 px in both dimensions.    

C. 117 patches (9 per tile) with dimensions (300 x 300) px. Overlap of 50 px in both dimensions.    

D. 52 patches (4 per tile) with dimensions (400 x 400) px. Overlap of 0 px in both dimensions.    

E. 52 patches (4 per tile) with dimensions (500 x 500) px. Overlap of 200 px in both dimensions.    

No further tiling was done, since the patch overlap was becoming too big, generating highly similar 

patches and yielded sub-datasets were too small. Also, the F1 score was expected to converge with the 

patch size of approximately half of the original tile, maximum though with the 70% size of the original 

tile (Reina et al., 2020). Unlike some approaches that mind the class-cover proportions of the patch 

(Buscombe & Ritchie, 2018; Kattenborn et al., 2020; Langford et al., 2019; Watanabe et al., 2018), all 

of my patches were used as they were tiled and there was no further selection. Using U-Net, the spatial 

information and correlations among classes matter for the learning process. Classes are spatially 

unevenly distributed and their frequency varies across patches in my sub-datasets. This stochasticity 

can positively contribute to the robustness of the model.      

To see the impact of rising the number of samples in the datasets on the learning process, data 

augmentation was applied to all sub-datasets, generating three sets per each, with the size of around 

800 samples (consistent with the baseline sub-dataset A), 1600 samples (double the baseline sub-

dataset A) and 3800 (imitating the dataset from the TGS challenge, that consisted of 4000 samples). I 

https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net/blob/main/masks_download_from_JSON.py
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used random rotations (probability=0.5, max left and right rotation of 15°, after which the images were 

not rendering correctly anymore), skews (probability = 0.7, magnitude = 0.5), flips through both y and x 

axis (probability = 0.9) and also random brightness (probability=0.4, min_factor=0.8, max_factor=1.2) 

for the augmentation, because they reproduce effects that could be naturally present in the remote 

sensing imagery. To further increase the diversity of the data, I also used small randomized elastic 

distortions (probability = 0.5, grid_width = 4, grid_height = 4, magnitude = 5) and shears (probability = 

0.4, tilt along y and x axis up to 10°). All the data augmentation was done with an image augmentation 

library Augmentor32.  

The sub-datasets were subsequently fed to the network using different model input dimensions and thus 

rescaling the patches in various scales. This was to investigate whether down-scaling could improve the 

performance by better filtering the relevant spatial patterns or it would hamper it by leading to a too big 

loss of information. The effect of this strategy on training time was also of interest.  

All of the experiments will be further explained in section 4.     

 

Figure 10  Flowchart of the development of the final sub-datasets for experiments 

 

 
32 Marcus D Bloice, Peter M Roth, Andreas Holzinger, Biomedical image augmentation using Augmentor, 
Bioinformatics, https://doi.org/10.1093/bioinformatics/btz259 
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3.5.3 The development of test sets 

Test sets were created in a similar fashion as was described in 3.5.1 and 3.5.2. I picked a (4608 x 3456) 

px original TIFF image, converted it to RGB, sliced into smaller square-shaped tiles with dimensions 

(800 x 800) px and picked two (or one) for labelling. Labelled tiles were then sliced further according to 

the experiment needs.    

I created four different test sets:  

1. Using one (800 x 800) px tile from the same image from which training tiles were taken (Table 

A 2 in the Appendix) 

2. Using two (800 x 800) px tiles from other images that were taken during the same flight, as the 

previous image (Table A 2 in the Appendix) 

3. Using two (800 x 800) px tiles from one image from the new summer set (August 2020)  

4. Using two (800 x 800) px tiles from one image from the new winter set (December 2019)  

The reasoning of the selection was to see the performance on highly similar data (1 and 2), on 

seasonally similar data (3) and on highly distinct data, taken during different phenological stage (4). Two 

tiles represent around 15% of the dataset. I picked only one tile for test set 1, because the other 

remaining tiles either contained mostly trees or were very difficult to interpret (significant curvatures and 

blur in the border image regions). All selected tiles and their location in the original images can be found 

in the Appendix Figure A 3, Figure A 4, Figure A 5, Figure A 6 and Figure A 7. 

All the datasets can be found at https://www.kaggle.com/biankatn/thesis-shrub-detection-with-unet.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.kaggle.com/biankatn/thesis-shrub-detection-with-unet
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4 Experiments   

This part describes the methods and experiments performed in order to improve the detection results. I 

briefly explain their purpose, set up, procedures and the data used. The main performance measure 

was F1 score because of the unbalanced nature of the used dataset.  

 

4.1 The baseline: sub-dataset A 

I set a baseline by running the original TGS U-Net model, described in the section 3.4, on my data in a 

set of four experiments – one for each of the classes described in Table 4. I adjusted the code so that 

the model accepted 3-chanelled RGB input. The code can be found at https://github.com/aggiungi1 

procione/Thesis---Shrub-detection-with-U-Net in the file model.ipynb. Sub-dataset A and its augmented 

versions (3.5.2 The development of sub-datasets) were used for this purpose. With the train : validation 

split 9 : 1, the first (non-augmented) sub-dataset A consisted of 748 training and 84 validation patches. 

The two augmented versions were used only with the shrubs class. The summary of all performed 

experiments can be found it Table 4. The total number of parameters in the model was 1.18 million.  

Table 4 The summary of experiments for the base model with sub-dataset A, (100 x 100) px patches 

 

4.2 Sub-datasets B-E: patch size, scale and data augmentation  

This is a set of experiments exploring the impact of the patch size and rescaling of the model input on 

the performance. Data augmentation is also being assessed simultaneously. All these experiments are 

visually summarized in Figure 10. Because of memory constraints and, most of all, time constraints, not 

all of them were feasible to do. For these reasons I omitted rescaling experiments with the biggest sub-

datasets (3808 instances), even though they exhibited the best performance. I also left out rescaling 

experiments with the worst performing (the smallest) sub-datasets (808 instances). In the end, I ran 21 

experiments in total, with sub-datasets B-E and only with the shrubs class. These experiments are 

summarized in Table 5 – Table 8. Table 9 summarizes how the size of input images with different initial 

spatial dimensions changes as it travels through U-Net’s pipeline. The total number of parameters was 

1.18 million for all experiments. 

 

No. Class 
Dataset size  

(train-set : val-set) 
Patch dimensions  

(height x width) [px] 
Model input dimensions 

(height x width) [px] 

1 Shrubs 

832 (748:84) 

100 x 100  128 x 128 

2 Trees  

3 Shadows  

4 Rocks  

5 Shrubs (augmented)  1664 (1497:167) 

6   Shrubs (augmented)   3832 (3448:384) 

https://github.com/aggiungi1%20procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1%20procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net/blob/main/tif_to_png.py
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The assumptions were the following: 

1) The patch size: 

a) Building on the studies of Kattenborn et al. (2020) and Reina et al. (2020), the accuracy is 

expected to improve with increasing patch size, because bigger patch captures more spatial 

context. This is illustrated in Figure 11.  

2) The model input size: 

a) Resizing images to smaller resolutions may lead to a loss of information (W. Zhang et al., 2019). 

Reina et al. (2020) indeed achieved a better performance with minimal down-scaling,  

b) whereas according to (Müllerová et al., 2017) and (Rakhlin et al., 2018), down-scaling the input 

patch can benefit the results by better filtering the relevant spatial patterns. This can, therefore, 

depend on the content of the images and what is the target group. My goal was to figure out 

which approach would work for my data.    

I tested scales 1:1 (patch size close to the original tile size), according to (Reina et al., 2020), and 1:2 

according to (Rakhlin et al., 2018). Because the input has to be compatible with the 4 max-pooling layers 

contained in the architecture of the TGS U-Net, and therefore must be divisible by 24, the scales were 

not always exactly that. 

For demonstration purposes, I also ran some of the more time and memory challenging experiments. 

Adjustments to the code were necessary because the sub-datasets were too large to fit in memory 

provided by the Google Colab. Namely, a custom generator33, loading the dataset from the hard disk 

into memory in batches, was implemented. The code can be found at https://github.com/aggiungi1 

procione/Thesis---Shrub-detection-with-U-Net in the file model.ipynb. However, the purpose was only to 

validate the hypotheses presented in this section and these experiments, regardless of their 

performance, were not considered in the further experimenting because of their time-consuming nature, 

that made them impractical. 

 
33 https://medium.com/@mrgarg.rajat/training-on-large-datasets-that-dont-fit-in-memory-in-keras-60a9 
74785d71 

https://github.com/aggiungi1%20procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1%20procione/Thesis---Shrub-detection-with-U-Net
https://github.com/aggiungi1procione/Thesis---Shrub-detection-with-U-Net/blob/main/tif_to_png.py
https://medium.com/@mrgarg.rajat/training-on-large-datasets-that-dont-fit-in-memory-in-keras-60a9
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Figure 11 Examples of patches with different sizes (from left: sub-dataset A, sub-dataset B, sub-dataset C, sub-
dataset D, sub-dataset E) 

Table 5 The summary of experiments with the sub-dataset B, (200 x 200) px patches 

 

Table 6 The summary of experiments with the sub-dataset C, (300 x 300) px patches 

 

Table 7 The summary of experiments with the sub-dataset D, (400 x 400) px patches 

 

No. Class 
Dataset size  

(train-set : val-set) 
Patch dimensions  

(height x width) [px] 
Model input dimensions 

(height x width) [px] 

1 Shrubs (augmented) 808 (727: 81) 

 200 x 200 

128 x 128 

2 Shrubs (augmented)  1658 (1492:166) 128 x 128 

3 Shrubs (augmented)  1658 (1492:166) 192 x 192 

4  Shrubs (augmented)   3808 (3427:381) 128 x 128 

5 Shrubs (augmented)   3808 (3427:381) 192 x 192 

No. Class 
Dataset size  

(train-set : val-set) 
Patch dimensions  

(height x width) [px] 
Model input dimensions 

(height x width) [px] 

1 Shrubs (augmented) 808 (727: 81) 

 300 x 300 

128 x 128 

2 Shrubs (augmented)  1664 (1497:167) 128 x 128 

3 Shrubs (augmented)  1664 (1497:167) 144 x 144 

4   Shrubs (augmented)   3808 (3427:381) 128 x 128 

5 Shrubs (augmented)   3808 (3427:381) 144 x 144 

6 Shrubs (augmented)   3808 (3427:381) 288 x 288 

No. Class 
Dataset size  

(train-set : val-set) 
Patch dimensions  

(height x width) [px] 
Model input dimensions 

(height x width) [px] 

1 Shrubs (augmented) 808 (727: 81) 

 400 x 400 

128 x 128 

2 Shrubs (augmented)  1658 (1492:166) 128 x 128 

3 Shrubs (augmented)  1658 (1492:166) 192 x 192 

4 Shrubs (augmented)  1658 (1492:166) 400 x 400 

5 Shrubs (augmented)   3808 (3427:381) 128 x 128 
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Table 8 The summary of experiments with the sub-dataset E, (500 x 500) px patches 

 

Table 9 Summary of changes in size inside U-Net depending on the model input size 

Model input size 
Size at the bottleneck  

(min. spatial size, max. depth) 
Model output size 

128 x 128 x 3 8 x 8 x 256 128 x 128 x 1 

144 x 144 x 3 9 x 9 x 256 144 x 144 x 1 

192 x 192 x 3 12 x 12 x 256 192 x 192 x 1 

240 x 240 x 3 15 x 15 x 256 240 x 240 x 1 

288 x 288 x 3 18 x 18 x 256 288 x 288 x 1 

400 x 400 x 3 25 x 25 x 256 400 x 400 x 1 

496 x 496 x 3 31 x 31 x 256 496 x 496 x 1 

 

Different models will be from now on denoted with the following name structure: Sub-dataset letter-

dataset size_model input dimensions (further info where it applies) (e.g. A-832_128x128 

(dropout=0.05)).   

Because I had limited time and computational resources, I picked the model that demonstrated the best 

tradeoff between performance and training time for my situation for the following experiments, which 

was the case no.3 in Table 6 (C-1664_144x144).  

 

4.3 Balancing the datasets 

The purpose of experiments presented in this section is to see the impact of creating training datasets 

with different target class representations on the model’s performance. I analyzed the non-augmented 

sub-dataset C, that contains 117 patches, for the percentage of shrub pixels and subsequently I filtered 

out patches containing less than 1% (P. Zhang et al., 2018) and less than 45% (Wei & Jr, 2013) of shrub 

pixels. I then enlarged these sub-dataset C versions to 1664 instances via data augmentation and I 

compared the results with the results of an equally sized unfiltered sub-dataset C. The notation of these 

models will be C-1664_144x144(1%), C-1664_144x144(45%) and C-1664_144x144 (unfiltered), 

respectively. 

Although under-sampling may lead to a loss of a critical information1313, the model already seemed to 

suffer some degree of overfitting, which could be further worsen with over-sampling, thus the former 

was applied for the study. Moreover, no additional data were readily available for the over-sampling 

method.     

 

No. Class 
Dataset size  

(train-set : val-set) 
Patch dimensions  

(height x width) [px] 
Model input dimensions 

(height x width) [px] 

1 Shrubs (augmented) 808 (727: 81) 

 500 x 500 

128 x 128 

2 Shrubs (augmented)  1652 (1486:166) 128 x 128 

3 Shrubs (augmented)  1652 (1486:166) 240 x 240 

4 Shrubs (augmented)  1652 (1486:166) 496 x 496 

5   Shrubs (augmented)   3808 (3427:381) 128 x 128 
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4.4 Hyperparameter tuning 

Hyperparameter tuning is another way to improve model’s performance before proceeding to testing 

phase. This section addresses the impact of different initial number of filters, dropout rate and batch size 

on the performance. The search was manual and I used the following values: 

1. The initial number of filters: The default number of filters at the beginning of the TGS U-Net was 16. 

I also explored if a deeper network with 32 and 64 filters at the beginning can learn better features. 

The choice was inspired by P. Zhang et al. (2018). Model C-1664_144x144 was used. Table 10 

shows the change in depth of a model based on the initial number of filters.  

The total number of parameters in the models was 1.18, 4.71 and 18.82 million, respectively. 

Table 10 Summary of changes in size inside U-Net depending on the initial number of filters 

No. of 
filters 

Model input size 
Size at the bottleneck  

(min. spatial size, max. depth) 
Model output size 

16 144 x 144 x 3 9 x 9 x 256 144 x 144 x 1 

32 144 x 144 x 3 9 x 9 x 512 144 x 144 x 1 

64 144 x 144 x 3 9 x 9 x 1024 144 x 144 x 1 

 

2. The dropout rate: The default dropout rate of the TGS U-Net was set to a low value of 0.05 because 

this regularization technique was reported by the author29 as not very efficient for the particular TGS 

competition. I tested whether higher dropout rates, namely 0.210, 0.510 (F. Zhang et al., 2015) and 

0.75 (P. Zhang et al., 2018), can prevent the model from overfitting on my data. In this case, model 

C-1664_144x144(45%) described in the previous section 4.3 was used. 

3. The batch size: The default batch size of the TGS U-Net was set to 32 that is generally viewed as 

an appropriate value (Bengio, 2012; Keskar et al., 2017; Masters & Luschi, 2018). Further, I 

experimented with smaller subsets of 15 samples fed to the network at a time and bigger ones, with 

the size of 50 samples, limited by the available GPU memory. Here similarly, the model C-

1664_144x144(45%) was used.  

I also examined using different optimizer (Nadam) and activation function (ELU, that supposedly learns 

representations more robust to noise (Iglovikov et al., 2017)), but the resulting differences were 

insignificant and therefore I decided not to include them in this thesis.  

 

4.5 Test data 

In this final test phase, all experiments were evaluated on independent tests sets described in 3.5.3. 

Since the models were trained on summer data, they were not expected to perform well with highly 

dissimilar winter images. For this reason, only some of the best performing models were evaluated on 

the test set 4.  Table A 8 in the Appendix describes which test sets were used for the individual models. 

  

 



 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 41 

5 Results  

5.1 The baseline: sub-dataset A 

1. Shrubs (832 x (100 x 100) px patches) 

The results on validation data: accuracy = 0.46, precision = 0.23, recall = 0.96, f1 score = 0.31. 

It can be noted, that the TGS U-Net in its original set up performs poorly with the small sub-dataset of 

shrubs class. The recall is high, which means that almost all shrubs are classified correctly. However, 

this metric alone is not representative, because as it can be seen in Table 11, there are more FPs than 

TPs and TNs combined, which means that the model labels too many pixels from other classes as 

shrubs. This is why the precision is so low. Figure 12 illustrates the confusion of bare land for shrubs, 

but this is the case also with trees and shadows. The first image in the figure is the original patch with 

black contours defining shrubs, the second is the binary mask with white polygons corresponding to 

ground truth shrubs, following is the heatmap of the probability of shrubs presence, with black contours 

to help to better orientate in the prediction and the last image is binary prediction after applying a 

threshold of probability bigger than 50%. Contours defining shrubs are present here in red to help to 

distinguish it from the black background.   

Using predictions in form of continuous maps (heatmaps), instead of discrete classes, can be particularly 

useful in case of landscapes with a lot of transitions among vegetation species or types, where pixels 

can contain more than one vegetation type, even in VHR imagery (Kattenborn et al., 2020). Because a 

lot of shrubs in the area of interest occurs around and even under the trees, the heatmaps in combination 

with an expert opinion could be in fact more useful than binary maps in decision making process 

regarding the landscape management.   

     Table 11 Confusion matrix of predictions on validation data. Shrubs class, 832 patch-dataset 

 

Figure 12 Visual example of the performance on validation data. Shrubs class, 832 patch-dataset. From left: image 
patch, binary mask, prediction and binary prediction with threshold 0.5. 

 

 Actual positives Actual negatives 

Predicted positives 206 996 707 120 

Predicted negatives 8 403 453 737 
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2. Trees (832 x (100 x 100) px patches) 

The results on validation data: accuracy = 0.79, precision = 0.83, recall = 0.83, f1 score = 0.83 

In case of tree class, the model performs much better even with the small sub-dataset. Table 12 shows, 

that correctly labeled pixels (TPs, TNs) are many more, than the incorrectly labeled ones (FPs, FNs). 

The model can detect 83% of all trees (recall) and 83% of all pixels labeled as trees are actually trees 

(precision). Figure 13 shows two examples – one of a high recall and precision and the other of a low 

precision.  

     Table 12 Confusion matrix of predictions on validation data. Trees class, 832 patch-dataset 

 

Figure 13 Two visual examples of the performance (top: better, with high recall and precision; bottom: worse, with 
low precision) on validation data. Trees class, 832 patch-dataset. From left: image patch, binary mask, prediction 
and binary prediction with threshold 0.5. 

 

3. Shadows (832 x (100 x 100) px patches) 

The results on validation data: accuracy = 0.90, precision = 0.77, recall = 0.63, f1 score = 0.69 

Similarly like trees, pixels are mostly labeled correctly with respect to the shadows class (Table 13). The 

overall quality of detection is worse, than in case of trees. The model struggles to identify 37% of all 

shadows. Figure 14 displays a problem to identify shrub pixels in the object’s boundaries.   

     Table 13 Confusion matrix of predictions on validation data. Shadows class, 832 patch-dataset 

 Actual positives Actual negatives 

Predicted positives 623 697 127 504 

Predicted negatives 126 486 498 569 

 Actual positives Actual negatives 

Predicted positives 150 786 45 729 

Predicted negatives 87 891 1 091 850 
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Figure 14 Visual example of the performance on validation data. Shadows class, 832 patch-dataset. From left: 
image patch, binary mask, prediction and binary prediction with threshold 0.5. 

 

4. Rocks (832 x (100 x 100) px patches) 

The results on validation data: accuracy = 0.99, precision = 0.72, recall = 0.18, f1 score = 0.29 

Table 14 perspicuously shows the disproportional representation of rocks class. The accuracy is as high 

as 99.5% only because pixels belonging to this class are so few. The recall 18% indicates that the model 

clearly fails to detect majority of rocks. From Figure 15 can be concluded, that illumination by sunlight 

has an impact on the detection quality.      

      Table 14 Confusion matrix of predictions on validation data. Rocks class, 832 patch-dataset 

 

Figure 15 Two visual examples of the performance (top: better, bottom: worse) on validation data. Rocks class, 832 
patch-dataset. From left: image patch, binary mask, prediction and binary prediction with threshold 0.5. 

 Actual positives Actual negatives 

Predicted positives 1 358 540 

Predicted negatives 6 001 1 368 357 
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5. Shrubs – augmented (1664 x (100 x 100) px patches) 

The results on validation data: accuracy = 0.84, precision = 0.71, recall = 0.56, f1 score = 0.63 

Augmenting the sub-dataset twofold brought significant improvement, increasing the F1 score from 0.31 

to 0.63. Precision also more than doubled (from 0.23 to 0.71), so in the results there is now more of the 

target pixels, than the ones from different classes. As a consequence, the recall dropped. The model 

stopped labeling too many pixels as the target class, which is also reflected in big decrease in FPs – 

from 51% to only 5% (Table 11 and Table 15, respectively; for details see Table A 3 in the Appendix).  

      Table 15 Confusion matrix of predictions on validation data. Shrubs class, 1664 patch-dataset 

 

6. Shrubs – augmented (3832 x (100 x 100) px patches) 

The results on validation data: accuracy = 0.85, precision = 0.73, recall = 0.64, f1 score = 0.68 

With further augmentation of the data, slight improvements in precision and F1 score are achieved, 

whereas the recall jumps up for almost 10%. A fraction of FNs now moved to TPs (Table 16 and Table 

A 3 in the Appendix), more pixels from the target group are now detected. Figure 16 shows the detection 

improvement.   

      Table 16 Confusion matrix of predictions on validation data. Shrubs class, 3832 patch-dataset 

 

Figure 16 Visual example of the performance on validation data. Shrubs class, 3832 patch-dataset. From left: image 
patch, binary mask, prediction and binary prediction with threshold 0.5. 

 

 Actual positives Actual negatives 

Predicted positives 347 615 139 200 

Predicted negatives 275 509 1 973 804 

 Actual positives Actual negatives 

Predicted positives 930 008 349 334 

Predicted negatives 513 684 4 498 430 
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5.2 Sub-datasets B-E: patch size, scale and data augmentation 

5.2.1 Summary 

Table 17 is a summary of results of all performed experiments. Two best results per sub-dataset are 

always in bold. For all but sub-dataset B the higher value is the result of the time-consuming experiments 

that took 46-60 hours to train.  

Table 17 The summary table of results of all performed experiments 

 

Figure 17 is a qualitative comparison of the results of the three most time demanding experiments and 

the model C-1664_144x144. It is apparent, that many additional training hours do not bring a lot of 

benefit in this regard.  

Sub-dataset 
name 

Patch dimensions  
(height x width) [px] 

Sub-dataset size 
Model input dimensions 

(height x width) [px] 
F1 

score 

Sub-dataset B 200 x 200 

808 128 x 128 0.61 

1658 
128 x 128 0.76 

192 x 192 0.75 

3808 
128 x 128 0.83 

192 x 192 0.82 

Sub-dataset C  300 x 300 

808 128 x 128 0.55 

1664 
128 x 128 0.80 

144 x 144 0.82 

3808 

128 x 128 0.83 

144 x 144 0.86 

288 x 288 0.90 

Sub-dataset D  400 x 400 

808 128 x 128 0.78 

1658 

128 x 128 0.79 

192 x 192 0.85 

400 x 400 0.90 

3808 128 x 128 0.84 

Sub-dataset E 500 x 500 

808 128 x 128 0.00 

1658 

128 x 128 0.80 

240 x 240  0.87 

496 x 496 0.90 

3808 128 x 128 0.82 
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Figure 17 Qualitative comparison of the performance of the models with the longest training time and the best 
tradeoff model regarding time and performance, C-1664_144x144.  

 

5.2.2 Impact of data augmentation and patch size 

Figure 18 presents the impact of data augmentation within each sub-dataset on F1 score. The blue 

series symbolize 808-instance datasets, the green 1658-instance datasets and the red 3808-instance 

C-1664_144x144; F1 = 0.82: ~4h 

D-1658_400x400; F1 = 0.90 ~46h 

E-1658_496x496; F1 = 0.90 ~60h 

C-3808_288x288; F1 = 0.90 ~50h 
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datasets. Clearly, the F1 score improves with growing dataset size. This trend is especially strong with 

sub-dataset B. For the sub-datasets with bigger patch sizes the difference is not that big, especially 

between the bigger datasets (1658 and 3808) – the performance seems to be converging. Sub-dataset 

D has the flattest trendline.  

The impact of patch size among sub-datasets can be also observed. Here, the sub-dataset D 

experiences the best performance with the smallest 808-instance dataset size, whilst the patch size 

doesn’t seem to provoke much of a difference among 3808-instance sized datasets and the F1 values 

oscillate around 0.83 for all sub-datasets. Despite running the model on sub-dataset E with 808 

instances multiple times it always failed to detect any shrubs. Neural networks don’t assure to reach a 

global optima, so probably the learning converged into some bad local minima, but at the moment I can’t 

offer a proper explanation for this phenomenon. This model is treated as an outlier with regards to 

discussion. All models’ input dimensions are (128 x 128) px.   

However, applying random data augmentation techniques yields different data every time, influencing 

class distribution in the dataset (Figure 19). This may impact the results as well. Model (C-

1664_144x144) with newly generated data, using slightly different set of augmentation techniques, 

performed a bit worse than its predecessor (0.05 drop in accuracy 0.04 in recall).  

 

 

Figure 18 Impact of data augmenting and a patch size on F1 score. Model input: (128 x 128) px 
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Figure 19 Impact of data augmentation on class distribution in the dataset: two runs of random augmentations of 
sub-dataset C (1664 patches) with the same techniques  

 

5.2.3 Impact of down-scaling 

Figure 20 takes a closer look at the impact of down-scaling of patches on the performance. The red 

series are the base patch size ((128 x 128) px), which therefore represents different scaling ratios for 

different patch sizes (from 42.67% to 25.6% of the original patch size). The yellow series represent 

approximately 50% of the original patch size and the green ones roughly 100%, which means basically 

no down-scaling. While the impact is indistinct in case of sub-dataset B, for the bigger patch sized 

datasets it is definitely better to minimize down-scaling, since it has negative impact on F1 score. 

However, for the sake of a tradeoff between the performance and time, the scale 1:2 seems to be 

generally the most viable option, similarly as for Rakhlin et al. (2018). The best results plateau on 0.90, 

which is an important information to consider, since each of these three experiments has a different 

training time (50h for sub-dataset C, 46h for sub-dataset D and 60h for sub-dataset E). On average, 

3808-instance sub-dataset C is the best performing one regarding F1 score. 
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Figure 20 Impact of down-scaling on F1 score 

 

5.2.4 Detailed results on validation set 

Sub-dataset B: (200 x 200) px patches 

1. 808 patches; model input dimensions: (128 x 128) px 

The results on validation data: accuracy = 0.83, precision = 0.80, recall = 0.49, f1 score = 0.61. 

Comparing to the sub-dataset A, twice as big patch size helped to achieve similar F1 score with almost 

five times smaller dataset. 80% of the pixels marked as shrubs actually belong to this class, however 

only half of them gets detected. Figure 21 is a perfect example of a borderline case, where it is not clear 

whether the model struggles to classify shrubs on extremely deformed images or the labels are just 

incorrect.   
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Figure 21 Visual example of the performance on deformed validation data. Shrubs, 808 x (200 x 200) px patch-
dataset, model input: (128 x 128) px. From left: image patch, binary mask, prediction and binary prediction with 

threshold 0.5. 

 

2. 1658 patches; model input dimensions: (128 x 128) px 

The results on validation data: accuracy = 0.87, precision = 0.90, recall = 0.65, f1 score = 0.76. 

Augmenting the sub-dataset to twice the size leads to great improvements – 10%, 16% and 15% higher 

precision, recall and F1 score, respectively. Figure 22 shows the improvement in performance in 

comparison to the best result with sub-dataset A (Figure 16). 

 

Figure 22 Visual example of the performance on validation data. Shrubs, 1658 x (200 x 200) px patch-dataset, 
model input: (128 x 128) px. From left: image patch, binary mask, prediction and binary prediction with threshold 
0.5.  

 

3. 1658 patches; model input dimensions: (192 x 192) px  

The results on validation data: accuracy = 0.87, precision = 0.86, recall = 0.67, f1 score = 0.75. 

Almost no downscaling of the patches (96% of the original patch size) basically didn’t impact the results. 

What it did impact, though, was the training time, that grew from about 4.5 hours to 9.5.  

Figure 23 poses the same question as Figure 21 – does the model struggle to work with augmented 

data, or it actually performs well and what is incorrect are the labels? 
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Figure 23 Visual example of the performance on deformed validation data. Shrubs, 1658 x (200 x 200) px patch-
dataset, model input: (192 x 192) px. From left: image patch, binary mask, prediction and binary prediction with 
threshold 0.5. 

 

4. 3808 patches; model input dimensions: (128 x 128) px  

The results on validation data: accuracy = 0.90, precision = 0.94, recall = 0.75, f1 score = 0.83. 

Certainly, additional augmentation improves the performance, F1 grows for 8%. On a patch of land of 

approximately (12 x 12) m (Figure 24), for the purposes of landscape planning and grazing 

management, this particular result could be viewed as satisfactory. 

 

Figure 24 Visual example of the performance on validation data. Shrubs, 3808 x (200 x 200) px patch-dataset, 
model input: (128 x 128) px. From left: image patch, binary mask, prediction and binary prediction with threshold 
0.5. 

 

5. 3808 patches; model input dimensions: (192 x 192) px  

The results on validation data: accuracy = 0.91, precision = 0.90, recall = 0.76, f1 score = 0.82. 

The experience with minor downscaling was the same also in this case, it had basically no effect on the 

results. The improvement of 1-2% is not worth the disproportionate increase in training time. 

However, analyzing confusion matrices of all these experiments (Table A 4 in the Appendix), one can 

see gradual decrease in FNs (from 11.87% with 808 patches and model input (128 x 128) px to 5.86% 

with 3808 patches and model input (192 x 192) px), so the presented techniques are slightly helping the 

model to better detect shrubs. 
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Sub-dataset C: (300 x 300) px patches 

1. 808 patches; model input dimensions: (128 x 128) px 

The results on validation data: accuracy = 0.66, precision = 0.48, recall = 0.64, f1 score = 0.55. 

Increasing the size of the patch for another 100 pixels in both dimensions yielded many times in a row 

worse results than with (200 x 200) px patches, the F1 score dropped from 0.61 to 0.55, although the 

biggest drop was recorded for the precision (from 0.80 to 0.48). The model started to label too many 

pixels from other classes as shrubs.   

 

2. 1664 patches; model input dimensions: (128 x 128) px  

The results on validation data: accuracy = 0.84, precision = 0.96, recall = 0.68, f1 score = 0.80. 

Bigger patch size brought expected outcome – the performance improved in comparison to same sub-

dataset size of (200 x 200) px patches. From Table 18 may be seen that FPs are below 1% (0.92%), 

which didn’t happen in the previous experiments. That also explains the very high precision.  

     Table 18 Confusion matrix of predictions on validation data. Shrubs, 1664 x (300 x 300) px patch-dataset, model 
input: (128 x 128) px 

 

3. 1664 patches; model input dimensions: (144 x 144) px  

The results on validation data: accuracy = 0.88, precision = 0.96, recall = 0.72, f1 score = 0.82. 

Rescaling to 48% of the original patch brings only minimal improvements. In this case, it is more 

understandable than previously, since the rescaling from (128 x 128) px only changed for about 5% of 

the original patch size, unlike in case of (200 x 200) px patches (64% of the original patch size with (128 

x 128) px and 96% with (196 x 196 px)). The model’s capacity to correctly interpret even complex shapes 

is undeniably improving (Figure 25).  

  

Figure 25 Visual example of the performance validation data. Shrubs, 1664 x (300 x 300) px patch-dataset, model 
input: (144 x 144) px. From left: image patch, binary mask, prediction and binary prediction with threshold 0.5. 

 

 Actual positives Actual negatives 

Predicted positives 554 954 25 096 

Predicted negatives 258 583 1 897 495 
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4. 3808 patches; model input dimensions: (128 x 128) px 

The results on validation data: accuracy = 0.85, precision = 0.97, recall = 0.73, f1 score = 0.83. 

Further extension of the sub-dataset brings marginal improvements. The model takes almost 9 hours to 

train. In Figure 26 another illustration of a great performance with even complex shapes.    

 

Figure 26 Visual example of the performance on validation data. Shrubs, 3808 x (300 x 300) px patch-dataset, 
model input: (128 x 128) px. From left: image patch, binary mask, prediction and binary prediction with threshold 
0.5. 

 

5. 3808 patches; model input dimensions: (144 x 144) px 

The results on validation data: accuracy = 0.88, precision = 0.96, recall = 0.77, f1 score = 0.86. 

In this case as well, the same small difference in rescaling ratios brings only small improvements. 

However, this is the best performance achieved so far. The training takes only about 30 minutes more 

than in the previous experiment. The confusion matrix with a notably high rates of correctly classified 

pixels can be seen in Table 19. The qualitative evaluation is illustrated in Figure 27.   

Table 19 Confusion matrix of predictions on validation data. Shrubs, 3808 x (300 x 300) px patch-dataset, model 
input: (144 x 144) px 

 

 

Figure 27 Visual example of the performance on validation data. Shrubs, 3808 x (300 x 300) px patch-dataset, 
model input: (144 x 144) px. From left: image patch, binary mask, prediction and binary prediction with threshold 
0.5. 

 

 Actual positives Actual negatives 

Predicted positives 1 607 796 62 251 

Predicted negatives 474 914 5 755 455 
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6. 3808 patches; model input dimensions: (288 x 288) px 

The results on validation data: accuracy = 0.94, precision = 0.90, recall = 0.90, f1 score = 0.90. 

The trend of increasing performance with the increasing scale continues with the scale of 96%. However, 

even though F1 score raised for 4%, the training took around 50 hours. This is enormous time-

consumption, especially considering that visually it is hard to tell the difference from the previous two 

experiments that take four times less to train. 

Generally, the percentage of FPs was very low in these experiments, usually below 1%, with an 

exception of the smallest 808-instance dataset (Table A 5 in the Appendix). The model is now pretty 

good at distinguishing between shrubs and other classes.   

 

Sub-dataset D: (400 x 400) px patches 

1. 808 patches; model input dimensions: (128 x 128) px 

The results on validation data: accuracy = 0.79, precision = 0.97, recall = 0.65, f1 score = 0.78. 

With the patch size (400 x 400) px, this experiment significantly outperformed all of the previous ones 

in this category of small 808-instance datasets. Exceptionally high precision indicates that the model 

thinks there are more shrubs than there actually are.    

 

2. 1658 patches; model input dimensions: (128 x 128) px  

The results on validation data: accuracy = 0.81, precision = 0.98, recall = 0.67, f1 score = 0.79. 

Improvement of 1-2% takes 5 hours – approximately double the time of the 808-patch dataset. 

 

3. 1658 patches; model input dimensions: (192 x 192) px 

The results on validation data: accuracy = 0.87, precision = 0.97, recall = 0.75, f1 score = 0.85. 

Despite the model takes 9 hours to train, rescaling the patches to 48% instead of 32% brings noteworthy 

improvement of 6% in F1 score. Only around 7% of all pixels are FNs and 0.6% are FPs (Table 20 and 

Table A 6 in the Appendix). Considering the tradeoff between time and performance, this is the second 

best model, after the 3808-patch sub-dataset C with model input dimensions (144 x 144) px. The 

illustration of the performance is in Figure 28.  

     Table 20 Confusion matrix of predictions on validation data. Shrubs, 1658 x (400 x 400) px patch-dataset, model 
input: (192 x 192) px 

 Actual positives Actual negatives 

Predicted positives 1 311 234 37 863 

Predicted negatives 433 427 4 336 900 
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Figure 28 Two visual examples of the performance on validation data. Shrubs, 1658 x (400 x 400) px patch-dataset, 
model input: (192 x 192) px. From left: image patch, binary mask, prediction and binary prediction with threshold 
0.5. 

 

4. 1658 patches; model input dimensions: (400 x 400) px 

The results on validation data: accuracy = 0.96, precision = 0.92, recall = 0.89, f1 score = 0.90. 

Another significant improvement of 5% in F1 score is achieved by using the 1:1 rescaling ratio. 

Considering only the performance this is the second best result, after the 3808-patch sub-dataset C with 

model input dimensions close to the original patch, (288 x 288) px. This performance, however, also 

comes at a price of 46-hour long training.  

 

5. 3808 patches; model input dimensions: (128 x 128) px 

The results on validation data: accuracy = 0.84, precision = 0.99, recall = 0.73, f1 score = 0.84. 

Six percent drop in F1 score comes with a relief of only 10.5 hours needed for the training. However, 

model seems to perform better and takes less time to train under conditions described in point 3 (i.e. 

1658-instance dataset with (192 x 192) px model input size). 

 

Sub-dataset E: (500 x 500) px patches 

1. 808 patches; model input dimensions: (128 x 128) px  

The results on validation data: accuracy = 0.64, precision = 1.00, recall = 0.00, f1 score = 0.00. 
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The model under these conditions repeatedly performed very bad. It was incapable to learn any relevant 

information about the class, labeling essentially all pixels in the validation set as non-shrubs (Table 21).  

It took two hours for the model to learn to predict outputs such as Figure 29. 

     Table 21 Confusion matrix of predictions on validation data. Shrubs, 808 x (500 x 500) px patch-dataset, model 
input: (128 x 128) px 

  

Figure 29 Two visual examples of the performance (top: better, bottom: worse) on validation data. Shrubs, 808 x 
(500 x 500) px patch-dataset, model input: (128 x 128) px. From left: image patch, binary mask, prediction and 
binary prediction with threshold 0.5. 

 

2. 1652 patches; model input dimensions: (128 x 128) px  

The results on validation data: accuracy = 0.79, precision = 0.98, recall = 0.68, f1 score = 0.80. 

Doubling up the number of instances brought a dramatic turn – a sudden raise in F1 score from zero to 

0.8 in only 4.5 hours. The model can detect 68% of the shrub pixels and only 2% of the detected pixels 

are from another class. Figure 30 brings two visual examples.     

 

 

 Actual positives Actual negatives 

Predicted positives 285 0 

Predicted negatives 472 896 853 923 
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Figure 30 Two visual examples of the performance on validation data. Shrubs, 1652 x (500 x 500) px patch-dataset, 
model input: (128 x 128) px. From left: image patch, binary mask, prediction and binary prediction with threshold 
0.5. 

 

3. 1652 patches; model input dimensions: (240 x 240) px 

The results on validation data: accuracy = 0.89, precision = 0.98, recall = 0.78, f1 score = 0.87.  

Down-scaling the patch to only 48% of the original (500 x 500) px one brings about 7% improvement in 

F1 score. The precision remains at 98%, whereas the recall raises up for 10%. The training lasted 15.8 

hours.   

 

4. 1652 patches; model input dimensions: (496 x 496) px 

The results on validation data: accuracy = 0.95, precision = 0.96, recall = 0.86, f1 score = 0.90. 

In this case, almost no down-scaling was applied. The F1 score is 0.90, the highest score achieved in 

these experiments. Recall improved for additional 8%, generating the all-low number of FNs – only 

3.56% (Table A 7 in the Appendix). This is the third time that an F1 score of 0.90 was achieved, however, 

at a cost of 60 hours of training.  

 

5. 3808 patches; model input dimensions: (128 x 128) px  

The results on validation data: accuracy = 0.79, precision = 0.99, recall = 0.70, f1 score = 0.82. 

Getting back to down-scaling the patch to 25.6% of the original one, the F1 score is only 2% higher than 

in case 2. (0.8) but takes around 10.5 hours to train – more than double the time of case 2.  

     Table 22 Confusion matrix of predictions on validation data. Shrubs, 3808 x (500 x 500) px patch-dataset, model 
input: (128 x 128) px 

 Actual positives Actual negatives 

Predicted positives 1 454 548 7 387 

Predicted negatives 622 363 4 158 006 
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Figure 31 Two visual examples of the performance (top: better, bottom: worse) on validation data. Shrubs, 3808 x 
(500 x 500) px patch-dataset, model input: (128 x 128) px. From left: image patch, binary mask, prediction and 

binary prediction with threshold 0.5. 

 

5.2.5 Performance fluctuation  

All the above-described experiments were run just once, with four exceptions: models B-1658_128x128, 

C-1664_144x144 and C-1664_144x144(newly augmented) with newly augmented data using the same 

augmentation techniques, and C-3808_288x288. These models underwent several runs to see how 

much did results differ among runs. All parameters were therefore held constant for each individual 

model during all the runs. I chose model C-1664_144x144 as the one I used in the majority of the 

experiments and I used it with two separate datasets that were augmented with the same techniques 

but were not identical, then I chose C-3808_288x288 as the well performing one and B-1658_128x128 

as another model with acceptable results within a relatively short training time. Averages, absolute 

uncertainties and ranges34 of the metrics evaluated on validation data can be seen in Table 23. These 

results are, of course, insufficient for any statistical purposes. Many more runs would be needed to 

obtain robust distribution of the output fluctuations, but this was not feasible because of computational 

and time constraints. The average range of all the results is 0.04, 0.03 after excluding the major outliers 

in model B-1658_128x128 – recall and subsequently F1 score, and 0.02 after excluding the entire model 

B-1658_128x128. Since there was only one run out of overall 13 with such a difference in recall (and 

F1), I considered the 0.02 range as the most representative one. Ranges in the Table 23 do not always 

equal double the value of the corresponding absolute uncertainty as a result of rounding.  

 
34 Range was calculated as the difference between maximum and minimum measured value. It is double 
the value of an absolute uncertainty.  
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Table 23 Averages, absolute uncertainties and ranges of metrics evaluated on validation data of four different 
models 

No. 1 2 3 4 

Model B-1658_128x128 C-1664_144x144 
C-1664_144x144 

(newly augmented) 
C-3808_288x288 

No. of runs 4 3 3 3 

Total time [h] ~17 ~13 ~13 ~150 

Accuracyavg  
± ∆ Accuracy 

0.85 ± 0.03 0.88 ± 0.01 0.83 ± 0.00 0.92 ± 0.02 

Accuracy range 0.05 0.01 0 0.04 

Precisionavg  
± ∆ Precision 

0.90 ± 0.01 0.95 ± 0.01 0.95 ± 0.00 0.89 ± 0.01 

Precision range 0.01 0.03 0.01 0.02 

Recallavg  
± ∆ Recall 

0.59 ± 0.09 0.72 ± 0.02 0.68 ± 0.01 0.89 ± 0.04 

Recall range 0.19 0.04 0.02 0.04 

F1avg ± ∆ F1 0.71 ± 0.08 0.82 ± 0.02 0.79 ± 0.00 0.89 ± 0.02 

F1 range 0.17 0.04 0.01 0.03 

 

 

5.3 Balancing the datasets  

The main metrics evaluating the performance of each experiment can be found in Table 24. With raising 

representation of shrub pixels in the dataset dropping accuracy, precision and F1 score can be noticed. 

From an overview of shrub distribution in the different versions of the sub-dataset C (Figure A 8 in the 

Appendix) can be seen that there is about 18% of patches with less than 1% of shrub cover in the non-

filtered (non-augmented) sub-dataset C, while around 87% patches contain less than 45% of shrub 

cover. This disproportion could be the reason of a different magnitude of the drop in accuracy, precision 

and F1 score between experiments 1 and 2, and 2 and 3. From Figure A 8 (6) in the Appendix can be 

also seen that shrubs are slightly over-represented in the 3rd experiment, which leads to a raise in recall. 

Figure 32 and Figure 33 show the qualitative difference in classification between model C-

1664_144x144(1%) and C-1664_144x144(45%) on the same patch.  

Table 24 Summary of results using datasets with different extent of shrub representation 

No. Model Shrubs in the dataset [%] Accuracy Precision Recall  F1 score 

1 C-1664_144x144(unfilt.) 24 0.88 0.96 0.72 0.82 

2 C-1664_144x144(1%) 29 0.86 0.86 0.77 0.81 

3 C-1664_144x144(45%) 60 0.74 0.73 0.78 0.76 
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Figure 32 Illustration of the classification results of model C-1664_144x144(1%) 

 

Figure 33 Illustration of the classification results of model C-1664_144x144(45%) 

Figure A 8 (3) & (6) in the Appendix is a perfect example of the randomness of the re-distribution of class 

representation when data augmentation is applied. Therefore, implementing this technique can be a 

contributor of a more difficult reproducibility of the experiment. 

 

5.4 Hyperparameter tuning 

The impact of increasing depth of the network on the performance is summarized in Table 25. There is 

not much of a difference in the accuracies and precisions, however the drop in recall, leading to drop in 

F1 score, is apparent for the deepest network with 64 initial filters. The network gets worse in noticing 

shrubs. Moreover, it takes around 30 hours to train, while the first two models only take around 5 and 

10 hours, respectively. Considering the little difference in performance between the model no. 1 and 2, 

the former one – the model in original setting using only 16 filters, looks like the best compromise 

between time and performance.        

Table 25 The summary of the impact of increasing network’s depth on the performance 

 

Increasing the dropout rate obviously spoils the performance (Table 26). The only exception is recall 

that raises to 1 with the highest dropout rate. This could be misleading though, since the model could 

be simply labeling most of the pixels as shrubs. The best performance is achieved with the smallest 

No. Number of filters Accuracy Precision Recall  F1 score 

1 16 (original setting) 0.88 0.96 0.72 0.82 

2 32 0.89 0.97 0.75 0.84 

3 64 0.87 0.97 0.62 0.76 
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dropout rate, that was a part of the original setting. There is less deterioration in metrics between dropout 

rates 0.05 and 0.2 but begins to be more apparent with bigger dropout rates. The change is especially 

pronounced between dropouts 0.2 and 0.5, where the decline especially in accuracy, but also in 

precision and F1 score, is significant (0.3, 0.12 and 0.08, respectively).     

Table 26 The summary of the impact of different dropout rate on the performance 

 

Finally, as Table 27 shows, the average performance doesn’t change much within this small range of 

batch sizes. There is only about maximum of 30 minutes difference in training time between consecutive 

models.  

Table 27 The summary of the impact of different batch size on the performance 

 

5.5 Test data 

The test phase showed generally worse performance of the models on the test data. The F1 score is 

usually the highest with the test set 2, but an absolute highest F1 score of 0.77 was achieved by model 

C-3808_288x288 with the test set 1. The second highest F1 score (0.76) was achieved by models C-

3808_288x288, C-1664_144x144(45%), C-1664_144x144(BS=15) and E-1658_240x240 using test set 

2. The highest F1 score averaged over test sets 1, 2 and 3 was thus achieved by model C-

3808_288x288, reaching 0.72. Figure 34 – Figure 36 show the performance of this model on test sets 

1-3 and Figure 37 illustrates its performance on test set 4. The average F1 score achieved by each 

model on all 3 test sets (excluding test set 4) followed the trend from Figure 18, where it was raising for 

the models using increasingly big patch sizes, peaked with the models using (300 x 300) px patch and 

plateaued for the rest of the models. A trend of improved F1 score with the raising dataset size as well 

as raising model input size could be also observed, with exception of models E-. The winter images 

performed badly, as it was expected. Therefore, values on test set 4, if the evaluation was performed at 

all, were generally treated as outliers and were not considered in the analysis.     

No. Dropout rate Accuracy Precision Recall  F1 score 

1 0.05 (original setting) 0.74 0.73 0.78 0.76 

2 0.2 0.71 0.73 0.75 0.74 

3 0.5 0.41 0.61 0.71 0.66 

4 0.75 0.41 0.60 1.00 0.75 

No. Batch size Accuracy Precision Recall  F1 score 

1 15 0.73 0.76 0.78 0.77 

2 32 (original setting) 0.74 0.73 0.78 0.76 

3 50 0.72 0.76 0.78 0.77 
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Figure 34 Visual example of the performance of C-3808_288x288 model on test set 1. From left: image patch, 
binary mask, prediction and binary prediction with threshold 0.5. Accuracy = 0.89, Precision = 0.84, Recall = 0.72, 
F1 score = 0.77. 

 

 

Figure 35 Visual example of the performance of C-3808_288x288 model on test set 2. From left: image patch, 
binary mask, prediction and binary prediction with threshold 0.5. Accuracy = 0.74, Precision = 0.76, Recall = 0.76, 

F1 score = 0.76. 
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Figure 36 Visual example of the performance of C-3808_288x288 model on test set 3. From left: image patch, 
binary mask, prediction and binary prediction with threshold 0.5. Accuracy = 0.67, Precision = 0.56, Recall = 0.71, 
F1 score = 0.62. 

 

 

Figure 37 Visual example of the performance of C-3808_288x288 model on test set 4. From left: image patch, 
binary mask, prediction and binary prediction with threshold 0.5. Accuracy = 0.63, Precision = 0.12, Recall = 0.00, 

F1 score = 0.00. 

 

For Balancing the datasets, the highest average F1 score (0.71) was achieved by C-

1664_144x144(45%) and this was also the model with the smallest difference between the validation 

(0.78) and test F1 score. The highest performance was generally achieved with test set 2 and the second 

highest with test set 1. The best F1 score achieved on test set 3 was 0.68 with the model C-

1664_144x144(45%). 

Regarding the Hyperparameter tuning, raising the number of filters brought exactly opposite results as 

the validation. Model C-1664_144x144(filters=32) performed worst on all three test sets (average F1 

score = 0.60), while C-1664_144x144(filters=64) showed the highest average F1 score 0.70 for all test 

sets (more specifically 0.64, 0.73 and 0.72, respectively for test sets 1, 2 and 3). C-

1664_144x144(filters=16) performed similarly with test sets 1 and 2 (0.66 and 0.74, respectively) and 
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only got worse with test set 3 (0.62). Test set 2 had the highest average F1 score (0.71), while test sets 

1 and 3 performed similarly on average (0.62 and 0.63, respectively). In case of a dropout rate, the 

testing followed the validation evaluation trend and models using higher dropouts were gradually 

performing worse on all test sets. Best average F1 score was once again achieved by test set 2 (0.73), 

while the second best by test set 3 (0.61). Finally, smaller batch sizes 15 and 32 showed better average 

F1 scores (0.70 and 0.71, respectively, as opposed to 0.64 for batch size 50). Test set 2 with the highest 

average F1 score (0.74) was followed by test set 1 and 3 (0.66 and 0.65, respectively).    

The complete summary of the results can be found in Table A 8 Table A 5in the Appendix.  
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6 Discussion  

In this section I analyze the results of individual experiments.  

 

6.1 The baseline: sub-dataset A 

From the results in 5.1it is clear that the overall performance improves with the raising volume of 

augmented data, with the highest F1 score (0.68) when training with the biggest sub-dataset (3832 

patches). This is not a surprise – the model has more examples to learn from and the data augmentation 

aids in encoding more invariance, making the learning more robust. The performance seems to be 

converging, but there is still a potential for further improvement by data extension through augmentation. 

A thing to notice here is a different percentage representation of the shrubs class in each validation 

dataset – 15.65%, 22.77% and 22.95% (from Table 11, Table 15 and Table 16, respectively; more detail 

can be found in Table A 3 in the Appendix). This is caused by splitting of the dataset into train and 

validation sets, as well as applying random data augmentation techniques, which may lead to different 

class distribution. Even though the differences are not big, similar stochastic situation can be expected 

in the training set, where it can directly influence results. More controlled way of generating new data 

and subsequent splitting them into train and validation sets could eventuate into more reproducible 

results.     

Another important thing that resurfaced was significantly better performance of the tree class, that 

outperformed shrubs even with the non-augmented dataset (832 patches). Similar results were 

achieved using the classification tool in QGIS (3.3). This can be ascribed to the fact, that trees are a 

much more balanced class without any artificial adjustments to the data, with 48.58% pixel 

representation across the dataset, while shrubs only account for 20.99%, but the most valid reason 

seems to be the fact, that trees are simply more distinct to other classes and suffer less from high intra- 

and low inter-class variance.  

However, even the most augmented sub-dataset A performs poorly in comparison to other sub-datasets. 

This might be caused by the fact, that the patches are too small for the model to recognize any overall 

pattern. There are assumably too many patches consisting of only a part of one object and not capturing 

enough of the background context, preventing the model from learning sufficient amount of the inter-

class correlations and leading to worse performance. Moreover, contrary to the other sub-datasets the 

patches here are up-scaled (from 100 to 128 px), which can bring more blur into them, making it even 

more difficult to see relevant patterns. On the top of that, scales larger than one don’t incur much 

performance improvement because there is no additional information gained, and instead they occupy 

more space in GPU (Zheng et al., 2016).   
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Accuracy is only slightly worse comparing to the accuracy achieved by the model in the TGS competition 

(0.85 and 0.92, respectively). This can be caused by the fact that the shapes in the original dataset are 

simpler, therefore this approach may not be the right one for vegetation classes. 

Generally speaking, the performance, especially so for the shrubs class, is not extraordinary. Small 

patch sizes probably fail to capture enough of spatial detail and fine-grained boundaries between the 

class and the background.  

 

6.2 Sub-datasets B-E: patch size, scale and data augmentation 

The results presented in section 5.2 evidently support data augmentation as a means of improving the 

performance. I compared F1 scores of models trained on 808-, 1658- and 3808-instance datasets in 

Figure 18. The biggest differences among models trained on the same sub-dataset were between 808- 

and 1658-instance datasets for the smaller patch-sized sub-datasets B and C. This is likely caused by 

insufficient amount of information provided by only 808 instances in a dataset, whereas doubling this 

amount to 1658 seems to be already satisfactory. On the other hand, expanding the datasets further to 

3808 does not anymore yield such big differences and the F1 score begins to plateau. The 

improvements are a couple of percent, while the training time generally doubles. This is normal, for 

example Hussain et al. (2019) gained only 4% improvement in accuracy with increasing the size of the 

dataset tenfold. Obviously, this also affects time greatly, a variable that had a big importance in this 

study. Thereby I didn’t proceed with experiments when the improvements in performance started to be 

too disproportionate to the time increments. Hence, this means that the presented results are not 

necessarily the best achievable ones and I would recommend further testing in this direction. For the 

augmentation, I used a high number of deformation types with generally high probability and magnitude, 

much higher than in case of e.g. Kattenborn et al. (2020), which could have corrupted the performance. 

Random data augmentation could be treated as another hyperparameter, since changing the 

deformation types (Reina et al., 2020) or their argument values could yield different classification results. 

Excluding deformation technique all together could potentially yield better results, since according to 

Sauder (2014) CNNs are not robust to deformations. An augmentation technique that I didn’t use and 

could reduce the misclassification problem is a multi-scale augmentation (Li et al., 2018; P. Zhang et al., 

2018). Training the model on a data at multiple scales can be useful for the classification of land cover 

with high spatial heterogeneity (P. Zhang et al., 2018) and could be worth of experimenting with. Another 

interesting thing to notice is that the representation of shrubs can vary for even 14% among datasets 

(e.g. D-808_128x128 and D-1658_400x400, details in Table A 6 Table A 5in the Appendix. Impacts of 

this were not further explored but it could be another topic for a future investigation.  

Patch size seems to have no significant impact on the performance of models using the biggest 3808-

instance dataset, all the values oscillate around 0.83. The situation is similar for models using (300 x 

300) px patches and bigger training on 1658-instance sub-datasets, that also have equal F1 score 

(0.80). This indicates that increasing the patch size is not justified anymore once the amount of samples 

in the training dataset is sufficient, and increasing it beyond (300 x 300) px also doesn’t improve the 



 67 

classification results, similarly as in case of Hung et al. (2014), instead it increases time and 

computational requirements. This same trend can be observed also in Figure 20. From Figure 18 can 

be also noticed that model D-3808_128x128 has the highest F1 score on average and the flattest 

trendline. It seems, that (400 x 400) px patches capture optimal amount of context and at the same time 

are capable of maintaining the most relevant information when down-scaled to (128 x 128) px (32% of 

the original size). Patch size is not the only hyperparameter introduced by tiling. The tile (in my case the 

patch) overlap may be another important factor to consider because it can affect the quality of predictions 

in border regions of the patches cropped from the original image. Cropping can lead to the boundary 

effect that introduces a bias in these regions due to zero padding, an artifact that is more pronounced 

when patches are stitched together afterwards. Solutions to this problem are averaging overlapping 

layers (Huang et al., 2018) or cropping away the edges of the output labelled image (Reina et al., 2020; 

Ronneberger et al., 2015; Stoian et al., 2019), which is considered to be a superior approach (Huang et 

al., 2018). The work of Iglovikov et al. (2017) went even further on this and added a cropping layer 

directly to the output layers of the network that do the cropping automatically and losses on boundary 

artifacts are not back-propagated. This thesis doesn’t address this issue but exploring the effect of this 

phenomenon on the particular data used in this study could be a good next step in the further 

experimentations.       

The harmful impact of down-scaling to a coarser resolution can be best seen in Figure 20. Degrading 

the imagery into too small resolutions significantly hampers the ability to detect structures and textures. 

The closer is the size of the rescaled patch to the original size, the higher F1 score is achieved. This is 

especially important in cases where the size of the objects of interest is already small, because with 

down-scaling they become even harder to see (Audebert et al., 2018). Moreover, for shrub detection not 

only the context is important, but also the information present within the class. Excessive downscaling 

thus indeed leads to the loss of relevant information (Reina et al., 2020; W. Zhang et al., 2019), however 

it is an interesting technique for shortening the training time (Audebert et al., 2018), with the scale 1:2 

as a good tradeoff between the little drop in performance but a shorter training time (Rakhlin et al., 

2018). Certainly, the best results were brought by the three most time demanding experiments – C-

3808_288x288, D-1658_400x400 and E-1658_496x496, all with a scale ~1:1. All yielded F1 score 0.90, 

but took 50, 46 and 60 hours to train, respectively. At the same time, F1 score dropped just for a few 

percent for the models using the same sub-datasets with the scale ~1:2, but the training times were 

much less (9.2, 9 and 15.8 hours, respectively). Besides, qualitatively they didn’t bring much value, as 

was showed in Figure 17. Different patch size doesn’t seem to have much of an impact on 1:1 and 1:2 

rescaling for these sub-datasets. Patches (300 x 300) px seem to provide sufficient amount of spatial 

detail and an enlargement for additional 100-200 px brings marginal improvements.  

The configuration of pre-processing techniques yielding the best results depends on the problem and 

on the object of interest (Guirado et al., 2017). Finding an optimal set of these methods for this particular 

problem would require further exhaustive research. One pre-processing method that could be helpful 

with this task is elimination of a background based on a color threshold in grayscale images (Guirado et 

al., 2017). In overall, I believe that one of the most important factors affecting the performance was 
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inaccurate labelling. There were cases when the model correctly classified pixels which I labeled 

incorrectly, similarly as for Rakhlin et al. (2018), thus, the performance might have been in fact better 

than indicated when compared to the reference data. Nevertheless, high quality labels remain to be one 

of the central elements of image classification success. The most problematic to classify correctly were 

generally the border regions of shrubs. This could be explained by U-Net’s lack of geometric accuracy, 

which leaves the edges of the classes not sharp (Stoian et al., 2019), but also by the fact that labelling 

of these parts was very challenging and therefore it could happen that they were labelled incorrectly 

from the very beginning. This issue was vanishing with the growing size of sub-datasets, patch 

dimensions and model input size.  

 

6.3 Balancing the datasets 

This experiment showed dropping performance in all metrics but recall with the increasing proportion of 

the shrub class representation in the dataset (Table 24). According to the precision trend, the model’s 

ability to distinguish shrubs from other land cover classes got worse, while the improvement in recall 

might have come from the fact that there were simply more shrub pixels to spot in the dataset. Moreover, 

the distribution of shrub pixels is shifted more to the right (Figure A 8), further favoring this class in the 

recall results.  

Model C-1664_144x144(45%), using the most balanced dataset, was expected to perform the best, 

considering some other studies (Wei & Jr, 2013), but the opposite was true. The learning process seems 

to be not robust enough, possibly from two reasons: 1.) The used sub-dataset was created with heavy 

augmentation from only 15 patches, which significantly lowers down the representativeness of already 

small data sample. This small sub-dataset surely doesn’t effectively cover the different arrangements of 

land cover in such a diverse heterogeneous scene as is present in my data, which means the model’s 

recognizing abilities may not be sufficient with new data. The under-sampling had definitely led to the 

loss of important information. 2.) The suitability of this kind of approach depends on the problem and 

whether under- (or over-) representation is a normal characteristic of the target class in real life 

situations, too. Because the distribution of shrubs is random in reality, respecting this feature in the 

training data may yield better results.  

 

6.4 Hyperparameter tuning 

Similarly to the case of P. Zhang et al. (2018), adding more filters improves the performance only until 

certain point after which it starts to drop, disagreeing with the general notion that deeper networks 

achieve better accuracies (Li et al., 2018). In my case, there was a little gain especially in recall (+0.03) 

and subsequently F1 score (+0.02) when doubling the initial number of filters from 16 to 32, but both 

metrics experienced drop of -0.13 and -0.08, respectively, after further doubling of the filters to 64. 

Accuracy and precision remained more or less constant. Using more filters made the network deeper 
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and more complicated, which was probably not necessary for my kind of data or brought too many 

weights for the amount of available data that could cause overfitting. The model might have learnt more 

complex features that are actually shared with other classes such as trees, which created a confusion 

in the classification. But because trees are a majority class in the dataset – almost half, while shrubs 

represent only about ¼ (Table 3), the model decided to favor the tree class in ambiguous situations 

because it simply saw more pixels with the particular feature being labeled as trees, or more precisely 

‘non-shrubs’. This theory would explain the drop in recall between using 32 and 64 filters. The F1 score 

of the best performing model C-1664_144x144(filters=32) was 0.84 but took 10 hours to train, while the 

model C-1664_144x144(filters=16) achieved 0.82 F1 score in half the time.     

Excluding the outlier recall (and therefore F1 score) of a model C-1664_144x144(45%), the metrics are 

generally getting worse with the increase of the dropout rate. The performance worsens considerably 

already with 0.5 dropout rate. Increasing the number of dropped neurons to 75% doesn’t lead to a strong 

decline in accuracy and precision but recall jumps to 1. Given the low value of accuracy and precision, 

the model is evidently labeling most of the pixels as shrubs, because it was not able to learn enough of 

important features. With a difficult task that includes a landcover as complex as the one present by the 

data used in this thesis, the more neurons facilitate the learning process the better. Therefore, using 

high dropout rates might not be a reasonable choice in problems like this one.  

The batch size in my case didn’t have much of an impact on the results. Probably the range was not 

sufficiently big and more distinct results would be obtained with larger differences in the batch sizes. 

Some (Masters & Luschi, 2018) reported the best results when using batch size as small as 2 or 4, while 

others (Iglovikov et al., 2017) favored batch sizes as big as 128. It seems that this hyperparameter, as 

many others, is also depending on many factors such as the type of a problem or if e.g. a transfer 

learning was applied, as in the case of Iglovikov et al. (2017). While there might be a room for further 

exploration of a batch size tuning, it would be reliant on computational resources. Moreover, taking into 

account that the batch size of 32 is generally recommended as an optimum, and that no significant 

changes were recorded with batch size changes in my experiments, I would not recommend going 

deeper with the topic in this particular case. However, an interesting way forward could be exploring 

whether larger batch sizes are superior to larger patch sizes in terms of improving the performance, as 

in case of Iglovikov et al. (2017), who traded the receptive field size in favor of a larger batch size. They 

used a small training set (25 images) with quite different images, which is a peculiarity shared with this 

thesis, but our studies diverge in terms of the image contents and the usage of a transfer learning, and 

the outcomes may therefore differ.      

There are many other hyperparameters that could be further explored in order to improve the 

classification results, but the optimal model generally depends on the used data35, so it is not only 

important to tune the hyperparameters, but also to choose them diligently, since some of them may have 

significant impact on the results while others can have almost none.   

 
35 https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-
validation.html  

https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html
https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html
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6.5 Test data 

In overall, models performed worse on the new data. The drop in performance was expected since some 

small overfitting on the training set is common and the validation data came from the same image.  

However, a lower decrease was expected. One possible explanation could be that I didn’t split one big 

dataset into train, validation and test sets, but I used data from entirely separate images for testing 

(excluding test set 1). The best average performance of all the experiments was achieved by test set 2 

(0.70), while test sets 1 and 3 performed equally (0.61, see Table A 9 in the Appendix). Worse 

performance of a test set 1 could simply have been caused by statistics – the test sets were not equal 

in terms of size, because the test set 1 only consisted of one patch while all of the other test sets 

consisted of two. An unlucky pick of a patch, i.e. having for example a different distribution than in train 

and validation data, even if coming from the same image could have caused difficulties during 

classification, causing bigger differences between validation and test results. Looking at the Figure A 3, 

the area selected as a test patch could really be perceived as a bit visually different from the rest, 

containing a big amount of bare land with a characteristic brightness as well as very dense shrubs on a 

skewed surface. I also tested this theory by switching the test and validation sets; i.e. I used a test set 

as a validation set and vice-versa. The validation set (patches from the same dataset as the training 

ones) performed better whether it was used for validation or testing. These results confirmed that my 

choice of a patch for the test set 1 was an unlucky pick somehow different from train and validation sets. 

Patches in the test set 3 came from different images taken in a different year, that was most likely the 

single biggest factor worsening the performance. The best evaluations were on test set 2 because these 

images were taken on the same day as the training ones and two patches were used, decreasing the 

risk of the chosen test data to be too area specific. The image from which training and validation patches 

were derived didn’t supply various enough data and the patches were an unrepresentative sample of 

the shrub patterns in the area, e.g. an area full of shrubs that would be perpendicular to the drone (like 

in the second image in a test set 3, see Figure A 6 in the Appendix) is missing entirely in the training 

data, moreover all the patches are too close to each other and overlapping, which may be further 

decreasing the variety. A more robust model could have been obtained by training on a larger dataset 

of patches derived from different images, taken on different days and in different years, that would 

improve the representativeness of the data and could have increased the variety of features to learn. 

The winter images are too different to be extrapolated from the summer data. A separate model is 

necessary.  

Higher testing performances (0.76 to 0.77) were generally achieved by models using bigger patch sizes 

and model input dimensions, in accordance with the validation results from the Sub-datasets B-E: patch 

size, scale and data augmentation section. Along with the data augmentation, these three methods 

proved to increase the classification performance, fulfilling the research objective no. III (1.4) of this 

thesis. The Hyperparameter tuning didn’t bring any significant improvements in the performance, neither 
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for validation, nor for test sets. Generally, the gap between validation and test scores are relative to the 

data, selected metrics and models36. 

Comparing my test results to some other CNNs trained from scratch (Hussain et al., 2019), and 

considering the complexity of the land cover of the presented area and the main objective of this work, 

the presented methods proved to be feasible even for an ordinary user and the results satisfactory, 

especially considering that there is a potential for further improvements in performance, meeting the 

research objective no. IV (1.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
36 https://machinelearningmastery.com/the-model-performance-mismatch-problem/  

https://machinelearningmastery.com/the-model-performance-mismatch-problem/
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7 Conclusions and future work 

This thesis explored the potential of detecting the target vegetation type in a complex heterogeneous 

landscape with U-Net. Shrubs are wild plants with different shapes, sizes and distribution patterns. The 

difficulty of this task was increased further with the fact that the data contained more than species of 

shrubs scattered in the forest area. Shrubs are of a priority interest in terms of fire risk in dry 

Mediterranean regions and mapping them can serve as a basis for better informed land management 

and reduction of the forest fire hazard. This work consisted of two main parts: creating and manually 

labelling the datasets and developing a method to increase a detection accuracy using a U-Net neural 

network. The impact of data augmentation, tiling, rescaling, balancing the dataset and hyperparameter 

tuning (number of filters, dropout rate and batch size) was explored in this regard. 

First, the task of creating a dataset was addressed. Labelling is an intensive and time demanding manual 

labor, because of which I was able to create only a very small training dataset of 13 (800 x 800) px tiles 

and later I relied on a heavy data augmentation. Distinguishing shrubs from other vegetation types in 

remote sensing images is a challenge for non-experts as well as for automatic detection methods. 

Particularly problematic were the border parts of the vegetation and skewed border regions of the fish-

eye images. Consistency was problematic especially with labelling shadows when it was sometimes 

difficult to distinguish between the shadow as a separate class or as a part of another class. The 

presence of labeling inaccuracies is therefore certain. I consider a very little labelled data that were not 

sufficient for learning of all the important features from scratch and incorrect labels as the biggest 

weaknesses of this work. Using bigger datasets with patches derived from several images taken during 

multiple flights and employing them in the training and validation process could have a significant 

positive effect on the results. Besides this, classification accuracy depends on how distinguishable the 

shrubs are from the surrounding. Good timing regarding phenological stage (which was perfect in my 

case), lower flying altitudes or using a higher resolution sensor to obtain more detail could help to 

alleviate this issue. However, a big intra-class and small inter-class variance in spectral signatures of 

presented vegetation classes will remain a challenge. 

Factors with the most significant impact on the detection capability were data augmentation, patch size 

and model input dimensions. The biggest datasets containing 3808 samples yielded the highest F1 

score of around 0.83 for all models. Further enlargement of the datasets could increase the performance 

even more. Modest amount of labeled data resulted in heavy data augmentation. I believe that further 

improvements could be achieved mainly by relying on more labelled data from spatially independent 

samples, rather than on heavy augmentation that can lead to overfitting and in case of very little data it 

can mask the problem of low representativeness, that can be revealed with new data. Larger volumes 

of data would also give more space to create more proportional datasets without too much 

augmentation. However, augmentation is still an extremely useful tool and for the sake of the future 

research it would be useful to find the best configuration of the augmentation techniques suitable for 

these data. Regarding the patch size, high spatial heterogeneity of the vegetation in my study area made 

the task particularly demanding and simply using the window size bigger than the physical size of the 
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target plants was not enough. Rather than thinking in terms of individual plants, it was necessary to 

consider the structures many plants formed together. Increasing the patch size was benefitting the 

performance up to (300 x 300) px. Patches bigger than that didn’t bring any significant improvement in 

performance, instead it increased the training time and computational demands. Tiling also brings along 

the boundary effect. This was not addressed in my study but assessing predictions in the border regions 

of this particular data would be also a good topic to investigate in the future, especially so for the data 

stitching. The last helpful technique was rescaling of the patches. Degrading the image resolution leads 

to a loss of information, but this technique was valuable for cutting down the training time, which was an 

important variable for me. Scale 1:2 significantly decreased the training time and didn’t lead to a dramatic 

drop in performance.   

With the increasingly balanced dataset, the F1 score was dropping for validation but increasing for 

testing. The highest F1 score averaged for all three test sets was 0.71. More experiments would be 

needed to draw a meaningful conclusions in this area, ideally with more diverse train and test data and 

without under-sampling and subsequent heavy augmentation of the training datasets. Experimenting 

with three hyperparameters: the number of filters, dropout rate and batch size didn’t bring any significant 

benefits. The next steps could focus on finding an optimal configuration of pre-processing methods as 

well as hyperparameters for this particular task. The availability of R and NIR bands could be also 

explored more, as well as employing transfer learning.  

This thesis demonstrated the capacity of U-Net for mapping the irregular shrub cover, presented 

methods improving the classification results and provided recommendations for a future research. The 

work has a potential to serve as an information tool for land planning and grazing management and 

could be also modified and repurposed to map other vegetation types, such as trees, or to be used as 

e.g. a forest inventory tool. 
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Appendix 

 

Figure A 1 Easier recognition of rocks and bare soil. RGB image, July 2016. Settings: Red band: Band 1, Min: 
150, Max: 255. Green band: Band 2, Min: 100, Max: 255. Blue band: Band 3, Min: 100, Max: 200. 

 

Figure A 2 Easier recognition of vegetation. RGB image, July 2016. Settings: Red band: Band 1, Min: 0, Max: 200. 
Green band: Band 2, Min: 50, Max: 200. Blue band: Band 1, Min: 0, Max: 200. 
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Table A 1  The most impactful parameters for classification results and data visualization 

Purpose Tool Specification Conclusion 

Visualization 

for 

interpretation 

Band rendering Interchanging bands. 

Adjusting band intensities.  

Applying Singleband 

pseudocolor: color ramps, 

interpolation types, no. of 

classes.  

Due to distinct reflectance of materials, 

different colour composites can highlight 

specific land surface features, e.g. bare 

soil, vegetation, etc. Some of the results 

can be found in Figure A 1and Figure A 

2Table A 5 in the Appendix. 

Better 

classification 

result 

Region 

Growing 

Algorithm: 

Distance 

An interval defining the 

maximum spectral distance 

between the seed pixel and 

the surrounding pixels 

(Congedo, 2016).  

Spectral Distance in my experiments 

varied from 0.005 to 0.08. For easily 

distinguishable objects, e.g. non-shaded 

trees, the value could be higher, up to 0.08 

(in radiometry units), whereas for the most 

problematic groups (rocks and shrubs) the 

interval was 0.005-0.01.  

Minimum 

Distance 

The Euclidean distance 

between spectral signatures 

of image pixels and training 

spectral signatures. If the 

distance is greater than 

threshold value, pixels are 

unclassified. 

This classification algorithm yielded better 

results than Spectral Angle Mapping (it was 

not possible to use Maximum Likelihood. 

This problem was most likely related to the 

pre-processing of study images, that 

possibly contained NoData values or alpha 

channels). I used default setting (0). 

Land Cover 

Signature 

Classification 

(LCS) 

A classification that can be 

used as alternative or in 

combination with the 

classification algorithm. 

Pixels belonging to two or 

more different classes are 

classified as Class overlap 

with raster value = -1000 and 

are left unclassified or are 

classified according to an 

additional classification 

algorithm (Congedo, 2016) 

I used LCS in combination with Minimum 

Distance classification algorithm. 

Classification results were significantly 

worse than when using only Minimum 

Distance, however, it was useful for 

assessing the proportion of pixels 

classified as belonging to more than 1 

class. According to the generated 

confusion matrix, 12.5% of pixels (1752807 

out of 13980121) were classified as 

belonging to more than 1 class and 84% 

were misclassified in this specific trial.  

Number of 

Regions of 

interest (ROIs) 

I tested 5 – 50 ROIs per class After certain threshold, higher number of 

ROI samples does not yield significantly 

better classification results. I concluded 

this threshold to be approximately 15 ROI 

samples per class for my study images.  



 c 

Table A 2 Names of images (taken in August 2019), tiles produced from them and tiles chosen for labelling 

Image 
number 

Image name (identical for 
TIFF and PNG) 

Tiles names Tiles selected for labelling 

1 2019_0830_105101_057 img1tile1… img1tile30 

img1tile2.png, img1tile3.png, 
img1tile4.png, img1tile5.png, 

img1tile8.png, img1tile11.png, 
img1tile12.png, img1tile13.png, 
img1tile14.png, img1tile19.png, 
img1tile20.png, img1tile21.png, 

img1tile27.png 
img1tile26.png – for testing 

2 2019_0830_105110_059 img2tile1… img2tile30 - 

3 2019_0830_105118_061 img3tile1… img3tile30 img3tile8.png – for testing 

4 2019_0830_105127_063 img4tile1… img4tile30 - 

5 2019_0830_105135_065 img5tile1… img5tile30 - 

6 2019_0830_105144_067 img6tile1… img6tile30 - 

7 2019_0830_105153_069 img7tile1… img7tile30 - 

8 2019_0830_105315_083 img8tile1… img8tile30 - 

9 2019_0830_105324_085 img9tile1… img9tile30 - 

10 2019_0830_105332_087 img10tile1… img10tile30 - 

11 2019_0830_105340_089 img11tile1… img11tile30 - 

12 2019_0830_105349_091 img12tile1… img12tile30 - 

13 2019_0830_105357_093 img13tile1… img13tile30 - 

14 2019_0830_105405_095 img14tile1… img14tile30 Img14tile20.png – for testing 

15 2019_0830_105519_107 img15tile1… img15tile30 - 

16 2019_0830_105527_109 img16tile1… img16tile30 - 

17 2019_0830_105535_111 img17tile1… img17tile30 - 

18 2019_0830_105544_113 img18tile1… img18tile30 - 

19 2019_0830_105552_115 img19tile1… img19tile30 - 

20 2019_0830_105601_117 img20tile1… img20tile30 - 

21 2019_0830_105609_119 img21tile1… img21tile30 - 
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Figure A 3 Image 2019_0830_105101_057 and tiles selected for labelling. Red frame signifies training (and validation) tiles. Yellow is a testing tile for test set 1.  





 g 

 

Figure A 4 Image 2019_0830_105101_061 and tile img3tile8 selected for labelling for test set 2 

 

Figure A 5 Image 2019_0830_105101_095 and tile img14tile20 selected for labelling for test set 2 
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Figure A 6 Image 2020_0826_115241_057 and tiles img1tile19 and img1tile21 selected for labelling for test set 3  

 

Figure A 7 Image 2019_1210_141336_069 and tiles img1tile28 and img1tile29 selected for labelling for test set 4   
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Table A 3 Sub-dataset A experiments: confusion matrices & pixel count 

 
  BASELINE - SUB-DATASET A (100x100)px: VAL SET.   

Model 
input 
size 
[px] 

set size & 
(val) set size 

& 
conf.matrix conf.matrix [%] act.shrubs 

act.non-
shrubs 

total pxs tot shrubs % in the set 

set pxs: 
(patch 

size)^2 * 
set size  

(val) set pxs: 
(patch 

size)^2 *val 
set size  

TP FP TP [%] FP [%] 

TP+FN FP+TN TP+TN+FP+FN (TP+FN)/ tot pxs 
FN TN FN [%] TN [%] 

128 832 84 206996 707120 15.040516 51.379976 
215399 1160857 1376256 15.65108526 

128 13631488 1376256 8403 453737 0.6105695 32.968939 

128 1664 167 347615 139200 12.704632 5.0874813 
623124 2113004 2736128 22.77393455 

128 27262976 2736128 275509 1973804 10.069302 72.138584 

128 3808 384 930008 349334 14.782079 5.5525144 
1443692 4847764 6291456 22.94686635 

128 62390272 6291456 513684 4498430 8.1647873 71.500619 
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Table A 4  Sub-dataset B experiments: confusion matrices & pixel count 

   SUB-DATASET B (200x200)px: VAL SET.   

Model 
input 
size 
[px] 

set size & 
(val) set 
size & 

conf.matrix conf.matrix [%] act.shrubs 
act.non-
shrubs 

total pxs tot shrubs % in the set 

set pxs: 
(patch 

size)^2 * 
set size  

(val) set 
pxs: (patch 
size)^2 *val 

set size  

TP FP TP [%] FP [%] 

TP+FN FP+TN TP+TN+FP+FN (TP+FN)/ tot pxs 
FN TN FN [%] TN [%] 

128 808 81 152449 38824 11.487344 2.9254678 
309925 1017179 1327104 23.35348247 

128 13238272 1327104 157476 978355 11.866139 73.72105 

128 1658 166 442282 47008 16.261898 1.728398 
680344 2039400 2719744 25.01500141 

128 27164672 2719744 238062 1992392 8.7531032 73.256601 

192 1658 166 1036843 175040 16.943474 2.8603999 
1556635 4562789 6119424 25.43760655 

192 61120512 6119424 519792 4387749 8.4941328 71.701994 

128 3808 381 1110403 66646 17.788352 1.0676507 
1487399 4754905 6242304 23.82772451 

128 62390272 6242304 376996 4688259 6.0393726 75.104625 

192 3808 381 2610208 290307 18.584363 2.0669505 
3433406 10611778 14045184 24.44543268 

192 140378112 14045184 823198 10321471 5.8610695 73.487617 
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Table A 5 Sub-dataset C experiments: confusion matrices & pixel count 

   SUB-DATASET C (300x300)px: VAL SET.   

Model 
input 
size 
[px] 

set size & 
(val) set 
size & 

conf.matrix conf.matrix [%] act.shrubs 
act.non-
shrubs 

total pxs 
tot shrubs % in the 

set 

set pxs: 
(patch 

size)^2 * 
set size  

(val) set 
pxs: (patch 
size)^2 *val 

set size  

TP FP TP [%] FP [%] 
TP+FN FP+TN TP+TN+FP+FN (TP+FN)/ tot pxs 

FN TN FN [%] TN [%] 

128 808 81 221328 235880 16.677517 17.77404 
347366 979738 1327104 26.17473838 

128 13238272 1327104 126038 743858 9.497221 56.051221 

128 1664 167 554954 25096 20.282458 0.9172086 
813537 1922591 2736128 29.73314845 

128 27262976 2736128 258583 1897495 9.4506909 69.349643 

144 1664 167 627350 29334 18.116256 0.8470905 
874407 2588505 3462912 25.25062722 

144 34504704 3462912 247057 2559171 7.1343713 73.902282 

128 3808 381 1327801 42624 21.271008 0.6828248 
1816802 4425502 6242304 29.10467033 

128 62390272 6242304 489001 4382878 7.8336621 70.212505 

144 3808 381 1607796 62251 20.350776 0.7879458 
2082710 5817706 7900416 26.36202954 

144 78962688 7900416 474914 5755455 6.0112531 72.850025 

288 3808 381 6358099 731075 20.119506 2.3134066 
7093538 24508127 31601665 22.44672235 

288 315850752 31601665 735439 23777052 2.327216 75.239871 
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Table A 6 Sub-dataset D experiments: confusion matrices & pixel count 

   SUB-DATASET D (400x400)px: VAL SET.   

Model 
input 
size 
[px] 

set size & 
(val) set 
size & 

conf.matrix conf.matrix [%] act.shrubs 
act.non-
shrubs 

total pxs 
tot shrubs % in the 

set 

set pxs: 
(patch 

size)^2 * 
set size  

(val) set 
pxs: (patch 
size)^2 *val 

set size  

TP FP TP [%] FP [%] 
TP+FN FP+TN TP+TN+FP+FN (TP+FN)/ tot pxs 

FN TN FN [%] TN [%] 

128 808 81 297124 10235 22.388901 0.7712282 
457448 869656 1327104 34.46964217 

128 13238272 1327104 160324 859421 12.080741 64.75913 

128 1658 166 565012 14354 20.774455 0.5277703 
845771 1873973 2719744 31.09744888 

128 27164672 2719744 280759 1859619 10.322994 68.374781 

192 1658 166 1311234 37863 21.427409 0.6187347 
1744661 4374763 6119424 28.51021599 

192 61120512 6119424 433427 4336900 7.0828071 70.871049 

400 1658 166 4938493 452075 18.593722 1.7020895 
5549927 21010075 26560002 20.89580791 

400 265280000 26560002 611434 20558000 2.3020857 77.402103 

128 3808 381 1318805 12700 21.126895 0.2034505 
1800891 4441413 6242304 28.84978047 

128 62390272 6242304 482086 4428713 7.7228857 70.946769 
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Table A 7 Sub-dataset E experiments: confusion matrices & pixel count 

   SUB-DATASET E (500x500)px: VAL SET.   

Model 
input 
size 
[px] 

set size & 
(val) set 
size & 

conf.matrix conf.matrix [%] act.shrubs 
act.non-
shrubs 

total pxs 
tot shrubs % in the 

set 

set pxs: 
(patch 

size)^2 * 
set size  

(val) set 
pxs: (patch 
size)^2 *val 

set size  

TP FP TP [%] FP [%] 

TP+FN FP+TN TP+TN+FP+FN (TP+FN)/ tot pxs 
FN TN FN [%] TN [%] 

128 808 81 285 0 0.0214753 0 
473181 853923 1327104 35.65515589 

128 13238272 1327104 472896 853923 35.633681 64.344844 

128 1652 166 587856 10855 21.614387 0.3991184 
865465 1854279 2719744 31.82156115 

128 27066368 2719744 277609 1843424 10.207174 67.77932 

240 1652 166 2105657 53485 22.022015 0.5593729 
2700721 6860879 9561600 28.24549239 

240 95155200 9561600 595064 6807394 6.2234772 71.195135 

496 1652 166 8665087 374331 21.217857 0.9166096 
10117422 30721231 40838653 24.77413249 

496 406418432 40838653 1452335 30346900 3.5562755 74.309258 

128 3808 381 1454548 7387 23.30146 0.1183377 
2076911 4165393 6242304 33.27154525 

128 62390272 6242304 622363 4158006 9.9700848 66.610117 
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Non-filtered sub-dataset C (117 instances: 

100%) 
Filtered sub-dataset C: patches containing more 

than 1% of shrub pixels (96 instances: 82%) 
Filtered sub-dataset C: patches containing  

more than 45% of shrub pixels (15 instances: 13%) 
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Figure A 8 Overview of shrub distribution in the original and under-sampled versions of sub-dataset C 
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Table A 8 Results on validation and test data. Symbol “-“ signifies models that were not evaluated on test data. Symbol “-//-“ signifies repeating values. 
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A  

832 128x128   0.46 0.23 0.96 0.31 0.22 

1 0.84 0.39 0.30 0.46 0.30 

0.55 

0.58 

test set 1 

2 0.50 0.51 0.91 0.65 0.49 0.52 

3 0.41 0.37 0.91 0.53 0.36 test set 2 

1664 128x128   0.84 0.71 0.56 0.63 0.46 

1 0.81 0.92 0.32 0.47 0.31 

0.56 

0.64 

2 0.70 0.83 0.50 0.62 0.45 test set 3 

3 0.69 0.58 0.61 0.60 0.42 0.58 

3832 128x128   0.85 0.73 0.64 0.68 0.52 

1 0.84 0.88 0.49 0.63 0.46 

0.63 

  

2 0.71 0.83 0.54 0.65 0.49   

3 0.72 0.63 0.60 0.61 0.44   

B 

808 128x128   0.83 0.80 0.49 0.61 0.44 - - - - - - - - - 

1658 

128x128   0.87 0.90 0.65 0.76 0.61 - - - - - - - - - 

192x192   0.87 0.86 0.67 0.75 0.60 

1 0.85 0.92 0.47 0.62 0.45 

0.61 

0.62 

test set 1 

2 0.70 0.84 0.49 0.62 0.45 0.61 

3 0.72 0.63 0.58 0.60 0.43 test set 2 

3808 

128x128   0.90 0.94 0.75 0.83 0.71 -  -  -  -  -  -    0.63 

192x192   0.91 0.90 0.76 0.82 0.70 

1 0.84 0.88 0.46 0.60 0.43 

0.62 

test set 3 

2 0.71 0.83 0.53 0.64 0.48 0.62 

3 0.72 0.63 0.63 0.63 0.46   

4 0.63 0.68 0.00 0.00 0.00      

C 
808 128x128   0.66 0.48 0.64 0.55 0.38 - - - - - - - - - 

1664 128x128   0.84 0.86 0.68 0.80 0.66 - - - - - - - - - 



 p 

144x144   0.88 0.96 0.72 0.82 0.69 

1 0.83 0.90 0.52 0.66 0.49 

0.67 

0.67 

test set 1 

2 0.63 0.88 0.63 0.74 0.58 0.68 

3 0.63 0.78 0.52 0.62 0.45 test set 2 

3808 

128x128   0.85 0.97 0.73 0.83 0.71 - - - - - -   0.72 

144x144   0.88 0.96 0.77 0.86 0.75 

1 0.82 0.92 0.47 0.62 0.45 

0.61 

test set 3 

2 0.60 0.88 0.52 0.65 0.49 0.60 

3 0.62 0.78 0.43 0.55 0.38   

288x288   0.94 0.90 0.90 0.90 0.81 

1 0.89 0.84 0.72 0.77 0.63 

0.72 

  

2 0.74 0.76 0.76 0.76 0.61   

3 0.67 0.56 0.71 0.62 0.45   

4 1.00 0.00 0.00 0.00 0.00      

C 1664 

144x144 
unfiltered  

(orig. model; 
orig.set.) 

0.88 0.96 0.72 0.82 0.69 
-

\\- 
-\\- -\\- -\\- -\\- -\\-   

0.68 

  

144x144 1% (orig. model) 0.86 0.86 0.77 0.81 0.73 

1 0.80 0.80 0.52 0.63 0.46 

0.65 

test set 1 

2 0.63 0.88 0.62 0.73 0.57 0.66 

3 0.63 0.78 0.48 0.59 0.42 test set 2 

4 0.57 0.64 0.03 0.06 0.03   0.74 

144x144 45% (orig. model) 0.74 0.73 0.78 0.76 0.75 

1 0.74 0.59 0.80 0.68 0.52 

0.71 

test set 3 

2 0.61 0.74 0.71 0.76 0.61 0.63 

3 0.56 0.64 0.71 0.68 0.51   

C 1664 

144x144 
Batch size = 15  
(model sel.45%) 

0.73 0.76 0.78 0.77 0.75 

1 0.74 0.59 0.79 0.68 0.51 

0.70 

0.68 

test set 1 

2 0.60 0.74 0.73 0.76 0.61 0.66 

3 0.56 0.63 0.72 0.67 0.51 test set 2 

144x144 
Batch size = 32 
(model sel.45%; 

orig.set.) 
0.74 0.73 0.78 0.76 0.75 

-
//- 

-//- -//- -//- -//- -//-   0.74 

144x144 0.72 0.76 0.78 0.77 0.73 1 0.71 0.54 0.71 0.61 0.44 0.64 test set 3 



 q 

Batch size = 50    
(model sel.45%) 

2 0.57 0.75 0.64 0.70 0.54 0.65 

3 0.56 0.63 0.58 0.61 0.43   

144x144 
dropout = 0.05 

(model sel.45%; 
orig.set.) 

0.74 0.73 0.78 0.76 0.75 
-

//- 
-//- -//- -//- -//- -//-   

0.61 

  

144x144 
dropout = 0.2  

(model sel.45%) 
0.71 0.73 0.75 0.74 0.82 

1 0.57 0.40 0.78 0.53 0.36 

0.64 

test set 1 

2 0.60 0.71 0.68 0.74 0.58 0.50 

3 0.51 0.58 0.71 0.64 0.47 test set 2 

4 0.32 0.45 0.97 0.61 0.44   0.73 

144x144 
dropout = 0.5  

(model sel.45%) 
0.41 0.61 0.71 0.66 0.69 

1 0.33 0.25 0.62 0.35 0.22 

0.52 

test set 3 

2 0.39 0.58 0.70 0.69 0.52 0.61 

3 0.32 0.43 0.67 0.53 0.36   

4 0.34 0.44 0.70 0.57 0.40     

144x144 
dropout = 0.75   

(model sel.45%) 
0.41 0.60 1.00 0.75 0.60 

1 0.31 0.30 0.91 0.45 0.29 

0.59 

  

2 0.39 0.59 0.90 0.71 0.55   

3 0.26 0.44 0.92 0.60 0.43   

4 0.31 0.44 0.94 0.60 0.42      

144x144 
filters = 16 (orig. 
model; orig.set) 

0.88 0.96 0.72 0.82 0.69 
-

\\- 
-\\- -\\- -\\- -\\- -\\-   

0.66 

test set 1 

144x144 
filters = 32 (orig. 

model) 
0.89 0.97 0.75 0.84 0.73 

1 0.81 0.92 0.41 0.57 0.40 

0.60 

0.62 

2 0.61 0.90 0.54 0.67 0.51 test set 2 

3 0.63 0.81 0.42 0.55 0.38 0.71 

144x144 
filters = 64 (orig. 

model) 
0.87 0.97 0.62 0.76 0.61 

1 0.82 0.86 0.51 0.64 0.47 

0.70 

test set 3 

2 0.64 0.90 0.62 0.73 0.58 0.63 

3 0.66 0.80 0.65 0.72 0.56   

D 
808 128x128   0.79 0.97 0.65 0.78 0.64 - - - - - -       

1658 128x128   0.81 0.98 0.67 0.79 0.66 - - - - - -       



 r 

192x192   0.87 0.97 0.75 0.85 0.74 

1 0.81 0.97 0.42 0.58 0.41 

0.62 

0.64 

test set 1 

2 0.63 0.88 0.61 0.72 0.57 0.62 

3 0.62 0.74 0.47 0.57 0.40 test set 2 

4 0.58 0.89 0.00 0.00 0.00   0.71 

400x400   0.96 0.92 0.89 0.90 0.82 

1 0.87 0.88 0.56 0.69 0.52 

0.66 

test set 3 

2 0.75 0.76 0.61 0.68 0.51 0.59 

3 0.75 0.60 0.62 0.61 0.44   

3808 128x128   0.84 0.99 0.73 0.84 0.73 

1 0.78 0.93 0.42 0.58 0.41 

0.64 

  

2 0.52 0.90 0.63 0.74 0.59   

3 0.52 0.76 0.48 0.59 0.42   

E 

808 128x128   0.64 1.00 0.00 0.00 0.00 - - - - - - - - - 

1658 

128x128   0.79 0.98 0.68 0.80 0.67 - - - - - - - - - 

240x240    0.89 0.98 0.78 0.87 0.76 

1 0.84 0.91 0.51 0.65 0.49 

0.67 

0.66 

test set 1 

2 0.62 0.85 0.69 0.76 0.61 0.66 

3 0.61 0.71 0.52 0.60 0.43 test set 2 

496x496   0.95 0.96 0.86 0.90 0.83 

1 0.87 0.92 0.53 0.67 0.50 

0.64 

0.72 

2 0.72 0.83 0.56 0.67 0.50 test set 3 

3 0.75 0.70 0.49 0.58 0.41 0.60 

4 0.63 0.34 0.00 0.01 0.01     

3808 128x128   0.79 0.99 0.70 0.82 0.70 

1 0.78 0.93 0.52 0.66 0.50 

0.67 

  

2 0.42 0.93 0.61 0.73 0.58   

3 0.46 0.83 0.48 0.61 0.43   

 

Table A 9 Total average F1 score per a test set 

 
Test set no. 1 2 3 

Total average F1 score of the test set 0.61 0.70 0.61 


